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Abstract

As a result of the process of descent with modification, closely related species tend
to be similar to one another in a myriad different ways. In statistical terms, this20

means that traits measured on one species will not be independent of traits mea-
sured on others. Since their introduction in the 1980s, phylogenetic comparative
methods (PCMs) have been framed as a solution to this problem. In this paper, we
argue that this way of thinking about PCMs is deeply misleading. Not only has
this sowed widespread confusion in the literature about what PCMs are doing but25

has led us to develop methods that are susceptible to the very thing we sought to
build defenses against — unreplicated evolutionary events. Through three Case
Studies, we demonstrate that the susceptibility to singular events indeed a re-
curring problem in comparative biology that links several seemingly unrelated
controversies. In each Case Study we propose a potential solution to the problem.30

While the details of our proposed solutions differ, they share a common theme:
unifying hypothesis testing with data-driven approaches (which we term “phylo-
genetic natural history”) to disentangle the impact of singular evolutionary events
from that of the factors we are investigating. More broadly, we argue that our field
has, at times, been sloppy when weighing evidence in support of causal hypothe-35

ses. We suggest that one way to refine our inferences is to re-imagine phylogenies
as probabilistic graphical models; adopting this way of thinking will help clarify
precisely what we are testing and what evidence supports our claims.
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Introduction

Every so often, evolution comes up with something totally new and unexpected, a40

so-crazy-it-just-might-work set of adaptations that is the stuff of nature documen-
taries. Many biologists likely have a favorite example of a lineage that has evolved
something spectacular such as devilishly horned lizards that squirt blood from
their eye sockets, marine sloths that grazed ancient seabeds, or that ancient lin-
eage of therapsid reptile that became covered in hair and filled with warm blood45

and milk.

As macroevolutionary researchers, it is hard to know what to do with these
types of events. Their singular and unreplicated nature seems incompatible with
models that we typically use to model change over time, such as Brownian motion
(BM; Felsenstein, 1973). Such models presume continuity, whereas rare events,50

such as the evolution of novel nutritive function in milk-producing glands, have
no clear precedent in history. The evolution of such traits may set in motion a
cascade of changes across an organism, such that descendant lineages may look
very different in many ways from their more distant relatives. Or alternatively,
a suite of traits may just happen to change at the same time. In either case, it is55

these sorts of idiosyncratic and unreplicated events that we often think of when
we think of the need to consider phylogeny in analyses of comparative data. And
this is not an abstract concern; a wide breadth of macroevolutionary data suggest
that abrupt shifts and discontinuities have been a major feature of life on Earth
(Uyeda et al., 2011, 2017; Landis and Schraiber, 2017; Jablonski, 2017). But as60

recent controversies in phylogenetic comparative biology have highlighted, our
methods may not be up to this task.

As examples, we highlight two recent controversies in phylogenetic compara-
tive methods (PCMs; for recent reviews, see Pennell and Harmon, 2013; O’Meara,
2012; Garamszegi, 2014). First, Maddison and FitzJohn (2015) demonstrated that65

common statistical tests (e.g., Pagel, 1994; Maddison, 1990) for the evolutionary
correlation of discrete characters are prone to reporting a significant association
even when the pattern is driven by a single (or, very few) independent evolution-
ary event(s). Maddison and FitzJohn (2015) referred to such scenarios as cases of
‘phylogenetic pseudoreplication’ (see also Read and Nee, 1995; Nee et al., 1996).70

We will argue that this unresolved problem permeates not just tests for discrete
character correlations, but nearly every method of finding associations in compar-
ative methods (Figure 1), including those involved in our second example: the
unacceptably high type-1 error rates (Rabosky and Goldberg, 2015) of methods
used to infer trait-dependent diversification (e.g., BiSSE; Maddison et al., 2007).75

Specifically, Rabosky and Goldberg (2015) show that applying BiSSE to real-world
phylogenies, which are usually not shaped liked the birth-death trees assumed by
our models (Mooers and Heard, 1997), often leads in erroneous support for trait-
dependent diversification models even when diversification dynamics are unre-
lated to the traits being considered. The work of Beaulieu and O’Meara (Beaulieu80

et al., 2013; Beaulieu and O’Meara, 2014, 2016) has illuminated the underlying rea-
sons behind Rabosky and Goldberg’s findings: the failure to consider biologicaly-
plausible alternative models. To address this shortcoming, Beaulieu et al. (2013)
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borrowed an idea from molecular phylogenetics (Penny et al., 2001; Galtier, 2001),
and developed a Hidden Markov Model (HMM) for describing the evolution of a85

binary character. In their HMM the transition rates between character states de-
pend on the ‘hidden’ state of another, unobserved, trait also evolving along the tree
(also see Price, 1997, who explored a related model). Applying the same principle
to trait-dependent diversification models, they showed how models that included
background heterogeneity in diversification rates provide a fairer comparison to90

the hypothesis of genuine state-dependent diversification (Beaulieu and O’Meara,
2016). Rather than considering a biologically unrealistic constant-rate null hypoth-
esis, Beaulieu and colleagues built models that allowed traits and diversification
to vary in biologically plausible ways (also see Zenil-Ferguson and Pennell, 2017,
on this point).95
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Figure 1: Singular, unreplicated events (vertical dashes) can drive significant re-
sults across several types of comparative analyses. Case Studies I–III are indicated
in panels I–III, and though we do not consider diversification models such as
BiSSE in our examples, they are similarly affected (panel IV). In each case, we
map (in some cases, arbitrarily) the dependent variable (Y) on the phylogeny on
the left and the predictor trait on the same phylogeny to the right (X), and indicate
whether the trait is a continuous trait (C), a discrete trait (D) or a diversification
rate. We also suggest a common method used to analyze such associations: IC -
Independent Contrasts (Felsenstein, 1985); OU - Ornstein-Uhlenbeck models (But-
ler and King, 2004); Pagel - Pagel’s correlation test (Pagel, 1994). Colors on the
branches indicate the state of the character on the phylogeny — either continuous
trait value, discrete character state, or diversification rate regime. Panels I and
III correspond to variations of “Felsenstein’s worst-case scenario” and “Darwin’s
scenario”, respectively.

We think that the type of solution suggested by Beaulieu and O’Meara (2016)
is general and applies across comparative biology. In this paper we develop this
argument through a series of three Case Studies, depicted in panels I–III of Figure
1. We will show in each Case Study that rare evolutionary events may deceive our
methods and distort our interpretation. For each study, we will then sketch out100

possible solutions for making causal inferences from comparative data. Each of
these approaches share a common philosophy but may differ in their details. We
do not have a one-size-fits-all solution and think that a diverse set of solutions are
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worth considering.

More specifically, all three Case Studies revolve around the problem of how105

to discover plausible histories of rare, evolutionary events — a practice we call
“phylogenetic natural history” — and how to disentangle the impact of these
events from that of the hypothesized effects we are investigating. But as we argue
throughout this paper, the inference problems stemming from singular events are
not actually specific to these cases. Rather they are only especially clear examples110

of broader challenges in comparative biology. By working through the singular
events cases, we develop two ideas that we think will help move PCMs forward.
First, we advocate for unifying hypothesis-testing and data-driven approaches.
Rather than being alternative methods of investigating macroevolutionary pro-
cesses and patterns, they are complementary, and in our view, essential, to one115

another. Second, we propose that comparative biologists need to be more care-
ful about how we draw causal inference from phylogenetic data. One particular
solution is to render comparative analyses as graphical models. These graphical
models can help clarify exactly what causal statements we are making and what
the limits of these inferences are.120

Case Study I: Felsenstein’s Worst-Case Scenario

More than anything else, it was the famous series of figures depicting his "worst
case scenario" (Figures 5, 6, and 7 in the original; our Figure 2) from Felsenstein’s
iconic 1985 paper “Phylogenies and the comparative method” that really grabbed
biologists by their Chacos and got the ball rolling on modern comparative think-125

ing. The idea is simple: as a result of shared ancestry, measurements taken on
one species will not be independent from those collected on another and espe-
cially so, if the two species are closely related. While other researchers had hit
upon similar notions throughout the early 1980s (e.g., Clutton-Brock and Harvey,
1980; Mace et al., 1981; Ridley, 1983; Stearns, 1983; Cheverud et al., 1985), none of130

these had the pervasive impact that Felsenstein’s presentation did (see for exam-
ple, Losos, 2011, who reproduces the figures and the accompanying reasoning in
his presidential address for the American Society of Naturalists). The problem is
just so obvious; all you have to do is look. And while of course his proposed solu-
tion, “independent contrasts” (IC), was widely adopted, we suspect it is the clarity135

with which Felsenstein articulated the problem that has kept his paper a hallmark
of biological education and a testament to the importance of tree-thinking, even
as his method has largely been largely superseded by the related least squares
(Grafen, 1989) and mixed model (Lynch, 1991; Housworth et al., 2004; Hadfield
and Nakagawa, 2010) approaches.140

However, an important part of this story is often missed: Felsenstein also noted
that the problem of non-independence does not occur if “characters respond es-
sentially instantaneously to natural selection in the current environment, so that
phylogenetic inertia is essentially absent” (p. 6). Despite this comment, a fre-
quent misunderstanding of his argument is that the problem inherent in a non-145

phylogenetic regression of phylogenetically structured data is that species are not
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Figure 2: Felsenstein’s scenario (Felsenstein, 1985) illustrates a problem quite like
that identified by Maddison and FitzJohn. Here we modify Felsenstein’s original
generating process from simple Brownian Motion, to A) Brownian Motion with a
single burst occurring on the stem branch of one of the two clades (indicated by
vertical dash). B) The distribution of trait values produces a figure very similar to
Felsenstein’s original scenario, but results in C) a single contrast (black) that is not
well-explained by the estimated Brownian Motion process, and thereby generates
a significant regression of PIC Y and PIC X (dotted line) despite both X and Y in the
shift and BM distributions being uncorrelated. D) As the ratio of the shift variance
to the BM variance increases, the proportion of contrast regressions that return
a significant result increases dramatically (each point represents 200 simulations
for a fixed phylogeny, with both the BM process and the random draw from the
shift distribution being uncorrelated with equal variance for both traits). While IC
corrects for singular events consistent with Brownian Motion, it does not correct
for the more general phenomenon of dramatic singular events driving significant
results in comparative analyses. Note that independence of species as data points
is not the issue.
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independent. In fact, independence of data is not an assumption of standard (non-
phylogenetic) linear regression at all! Rather, standard linear regression assumes
that the residuals of the fitted model are independent and identically distributed
(i.i.d.). As a result, many applications of a “phylogenetic correction” seem to be150

missing the point (Revell, 2010; Hansen and Bartoszek, 2012): if all of the phylo-
genetic signal in a dataset is present in the predictor trait and residual variation
is i.i.d., then there is no need for any phylogenetic correction (Rohlf, 2001, 2006).
(However, phylogenetic analyses are nearly always needed to determine this con-
dition in the first place.)155

But for many researchers, applying non-phylogenetic methods to phylogenet-
ically structured data is deeply unsettling; it just seems wrong somehow, even if
we cannot quite put our finger on why (a problem that we revisit below). We
suggest that what made Felsenstein’s prima facie argument so compelling was that
it appealed to biologists’ intuition that many large clades of organisms are just160

different in many potentially idiosyncratic ways. In other words, singular events
are a common feature of evolution across the tree of life (Uyeda et al., 2011; Lan-
dis and Schraiber, 2017; Uyeda et al., 2017; Jablonski, 2017) and we do not want to
infer a causal relationship from unreplicated data (Nee et al., 1996). To illustrate
the effect of non-independence of characters, Felsenstein simulated a “worst-case165

scenario” (our Figure 2) in which two clades are separated by long branches. He
then evolved traits according to a BM process along the phylogeny; he recovered
a significant regression slope using Ordinary Least Squares (OLS) despite there
being no evolutionary covariance between the traits.

Here we revisit Felsenstein’s worst case scenario in order to demonstrate that170

IC and PGLS (which is identical to IC when the residuals are assumed to covary
according to a BM model; Blomberg et al., 2012) do not completely address the
problem that we tend to think they do — these methods are still susceptible to
singular evolutionary events. In our first scenario, we used a phylogeny with
two clades, each of which is internally unresolved, similar to that of Felsenstein’s175

original example. We emphasize that the only phylogenetic structure is that stem-
ming from the deepest split. We then simulated two traits under independent
BM processes, each with an evolutionary rate (σ2) of 1. So far, this is an identi-
cal procedure to Felsenstein’s initial presentation. However, at some point on a
stem branch of one of the two clades we introduce a singular evolutionary “event”180

drawn from a multivariate normal distribution with uncorrelated divergences and
equal variances that are a scalar multiple of σ2.

The resulting distribution of the data suggests a situation very similar to Felsen-
stein’s original worst-case scenario, and what we argue is the type of problem
envisioned by most biologists when they warn their students of the dangers of ig-185

noring phylogeny. To take a more concrete example, consider birds and mammals.
Lots of things have happened since these groups diverged from their common an-
cestor and these have happened for many idiosyncratic reasons that are not well
described by our models. For example, milk evolved somewhere along the mam-
malian lineage and surely this affected the evolution of other traits. Yet it would190

be nonsensical to describe the evolution of milk as a Brownian process, starting in
some ancient reptile and merrily continuing on its way from Aardvarks to Zebra
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Finches.

One would hope that our tools for “correcting for phylogeny” would recog-
nize that the apparently strong relationship between the two traits in our example195

was driven by only a single contrast. However, this is not the case. That single
contrast results in a very high-leverage statistical outlier that drives significance
as the size of the shift increases (Figure 2). We can repeat the same exercise with
more phylogenetically structured data (where the two clades of interest are fully
bifurcating following a Yule process) and obtain identical results (Figure 2, see200

Supplementary Material). This is disconcerting since our intuition suggests that
we do not have compelling evidence for a causal relationship between these two
traits (i.e., there is very little reason for us to believe from this correlation alone
that one trait is an adaptation to the other).

How can we formulate a better set of models that can account for what our205

intuition tells us is a dangerous situation for causal inference? We can do so
by including another phylogenetically plausible model: a singular shift driving
differences between clades. Let us consider a scenario quite distinct from Felsen-
stein’s multivariate BM (mvBM) scenario. Instead, traits do not evolve by mvBM,
but rather undergo a shift at a single point (e.g., perhaps ancient dispersal event210

where one clade invaded a new environment or the evolution of a novel key in-
novation). In such a scenario, we only need to consider the phylogeny in as much
as a given species exists on either side of the event in question; except for this
difference, the traits have no phylogenetic signal and the residuals are otherwise
i.i.d. We can then erect two models: a linear regression model and a singular event215

model.

Linear regression model:

Y = βXX + β0 + ε;
X = ψ(X)

(1)

where βX and β0 are the slope and intercept to the regression of Y on X, ε is a
vector containing i.i.d. random variables describing the error, and the predictor
X is generated by some stochastic process ψ(·) on the phylogeny (e.g., a random220

variable describing a single burst in X on the stem branch of one of the two clades).
Alternatively, X and Y may not be related to one another at all. Rather, they may
be the products of singular random evolutionary events, E1 and E2, that just so
happened to occur on the branch separating two clades:

Singular events model:225

Y = βY IE1 + βY0 + εY;
X = βX IE2 + βX0 + εX

(2)

where the variables IE1 and IE2 are indicator random variables that take the value
of 1 if an observation is from a lineage that experienced a phylogenetic event, or
otherwise they are 0. Furthermore, βY0 and βX0 are the parameters that describe
the trait means had they not experienced the singular evolutionary event in ques-
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tion. Thus, under the laws of conditional probability, the bivariate probability230

P(X, Y) under the liner model is:

P(X, Y) = P(Y|X, βX, β0, σY)P(X|θψ, σX)P(βX)P(β0)P(θψ)P(σY) (3)

where θψ are the parameters of the process for X on the phylogeny, and σ2
Y and

σ2
X are the residual variances. This equation is derived from the assumed path of

causation between X and Y, since the likelihood function of trait X, denoted by
P(X|θψ, σX), is independent of Y, while the likelihood function of Y, denoted by235

P(Y|X, βX, β0, σY) depends on X. The remaining terms in the probability statement
are interpreted as prior distributions for the parameters in a Bayesian inferential
framework. For the singular event model, a similar exercise results in:

P(X, Y) = P(βY)P(βY0)P(βX)P)(βX0)P(σX)P(σY)

× P(NE1 = 1)P(NE2 = 1)P(LE1|NE1)P(LE2|NE2)

× P(Y|LE1, βY, βY0, σY)P(X|LE2, βX, βX0, σX) (4)

where P(NE1 = 1) and P(NE2 = 1) are the probabilities of observing a single shift
on the phylogeny, and P(LE1|NE1) and P(LE2|NE2) are the probabilities of observ-240

ing these singular shifts in locations LE1 and LE2, respectively. The linear regres-
sion and singular events models lead to potentially very different distributions of
trait data at the tips. For example, the singular event model, the distribution of
Y is conditionally independent of X after accounting for LE1, βY, βY0 — a testable
empirical prediction that will often result in these two models being easily distin-245

guishable with model selection. But failing to consider the singular event model
as a possibility is a problem: even for the simple case of two continuous traits, we
have shown how easily data simulated under the singular event model can result
in highly significant regressions for OLS, PGLS and IC regressions, regardless if
the residuals are simulated as independent or phylogenetically correlated with re-250

spect to the model and phylogeny. We also note that estimating a λ transformation
for the residuals (Pagel, 1999; Freckleton et al., 2002) will not rescue the analysis;
the estimated value of λ will lie between 0 and 1 and we have found both these
more extreme cases (OLS and IC, respectively) to be susceptible.

One might argue that the situation we describe is simply a violation of a BM255

model of evolution — and this would of course be correct (see also Maddison and
FitzJohn, 2015). Indeed, for decades it has been common practice (but unfortu-
nately, not universally so) to test whether contrasts are i.i.d. after conducting an
analysis using IC (Garland et al., 1992; Purvis and Rambaut, 1995; Slater and Pen-
nell, 2013; Pennell et al., 2015). Of course, Felsenstein recognized this particular260

vulnerability in his method, and correctly predicted that the underlying model
was an “obvious point for future development” (p. 14). While today we have a
much wider range of comparative models to choose from, most continuous trait
models are Gaussian (e.g., Pagel, 1999; Blomberg et al., 2003; Butler and King,
2004; O’Meara et al., 2006; Eastman et al., 2011; Beaulieu et al., 2012; Uyeda and265

Harmon, 2014). It is only recently that alternative classes of models have been con-
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sidered (Landis et al., 2012; Elliot and Mooers, 2014; Schraiber and Landis, 2015;
Boucher et al., 2017; Duchen et al., 2017). Whether or not these types of models
can sufficiently account for these types of singular events will be examined in the
next section. However, our primary point here is to suggest that the phenomenon270

that made Felsenstein’s argument so intuitive is not the violation of i.i.d. residuals
but rather the biologically intuitive realization that unreplicated differences co-
localized on a single branch provide only weak evidence of a causal relationship
between traits. However, this alternative model is rarely included in comparative
analyses. Even for continuous traits, such unreplicated events can cause similar275

problems as those outlined by Maddison and FitzJohn (2015) in the case of discrete
character correlations (as we will further elaborate in Case Study III).

Case Study II: Adaptive hypotheses and singular shifts

As stated above, the IC method is based on the BM model of trait evolution. While
this model is useful (and has often been used) for testing for adaptation, it is in-280

consistent with how we think of the process of adapting to an optimal state (Lande,
1976; Hansen, 1997; Hansen and Orzack, 2005; Hansen et al., 2008; Hansen and
Bartoszek, 2012). Hansen’s introduction of the Ornstein-Uhlenbeck (OU) process
to comparative biology and the suite of methods built on his approach have been
the only real attempts to actually try and capture the basic dynamics of adaptive285

trait evolution on phylogenies. While it is formally equivalent to a model of stabi-
lizing selection within a population with a fixed additive genetic variance (Lande,
1976; Hansen and Martins, 1996), we agree with other researchers (Hansen, 2012)
that the OU model is usually best thought of as a phenomenological descriptor of
the long-term movement of adaptive peaks or adaptive zones rather than that of a290

population climbing along a fixed adaptive landscape.

While an OU model with a single stationary peak is often matched up against
BM and other alternatives (Harmon et al., 2010; Slater et al., 2012; Pennell et al.,
2015; Cooper et al., 2016), multi-peak OU models have been widely used to test
for the presence of shifts in evolutionary regimes (i.e., parts of the phylogeny with295

their own optima, or less commonly, their own strength of selection parameters).
Tests of adaptive evolution come in two flavors: those with an a priori hypoth-
esis (or hypotheses) regarding which lineages belong to which distinct regimes
based on ancestral state reconstruction of explanatory factors (Butler and King,
2004; Beaulieu et al., 2012) and those where the locations of regime changes are300

themselves estimated along with the parameters of the OU process (Ingram and
Mahler, 2013; Uyeda and Harmon, 2014; Khabbazian et al., 2016).

These two types approaches represent two different philosophies of data anal-
ysis that follow a schism that cuts through comparative methods. For example,
there are two major ways to investigate the dynamics of lineage diversification:305

test specific hypotheses about the drivers of diversification rate shifts (for exam-
ple, the ‘SSE’ family of models; Maddison et al., 2007; FitzJohn, 2012) or search
for the most-supported number and configuration of shifts (Alfaro et al., 2009;
Stadler, 2011; Rabosky, 2014). The former (hypothesis-testing) seeks to understand
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the causes of evolutionary shifts, while the latter is a descriptive and exploratory310

approach to understanding evolutionary patterns. As we alluded to above, we re-
fer to these data-driven approaches as “phylogenetic natural history” due to their
similarity to the practice of natural history observations in nature but projected
backwards through phylogenetic space and time (Maddison and FitzJohn, 2015)

Of course, the types of inferences we can make will be limited by our choice315

of approach. For example, it may be tempting to use exploratory approaches such
as BAMM (Rabosky, 2014) or bayou (Uyeda and Harmon, 2014) to search a vast
range of model space to find a particularly well-supported statistical hypothesis,
observe the shifts identified, and then come up with post hoc explanations for
why that particular configuration fits an adaptive story that the researcher can320

suddenly construct with great precision. (Comparative biologists are of course
not unique in succumbing to such temptations; see for example Pavlidis et al.,
2012). However, good scientists recognize that such a practice can easily become
a form of data snooping. In fact, discovering the location of well-supported shifts
on the phylogeny does not say anything about causation; it is merely a descrip-325

tive technique to find major features of the data where there is evidence that the
parameters governing the dynamics of trait evolution have shifted on the phy-
logeny. It is nonetheless useful — and we argue essential — that a researcher
know where these shifts occur. The reasons for this are covered in Case Study
I: these major shifts are likely to drown out any biological signal in a dataset if330

they are unaccounted for by our hypothesis-driven models. While it is dangerous
to come up with your hypothesis after viewing the data, it is equally dangerous
to apply and interpret a model fit to your data without plotting and visualizing
the signal in your data. We argue that hypothesis-driven and phylogenetic nat-
ural history approaches are complementary: we must pit our particular causal335

hypotheses against a “stuff-happens” model built on idiosyncratic singular evolu-
tionary events.

To illustrate how we might go about uniting these two modes of inference to
disentangle the support for causal models of evolution from that attributable to
singular events, we reanalyze a dataset introduced by Scales et al. (2009) on lizard340

muscle fiber proportions (hereafter, the ‘Scales’ dataset). (An expanded dataset
was re-analyzed by Scales and Butler (2016) with slightly modified hypotheses;
but the original 2009 paper serves as a clearer illustration of our perspective and
since we are using it only for rhetorical purposes, we will not delve into differences
between the two.)345

Scales et al. (2009) are interested in the composition of muscle fiber types in
squamate lizards, and whether these muscle fibers evolve adaptively in response
to the changing behavior and ecology of the organisms. They propose three pri-
mary adaptive hypotheses for the drivers of fast glycolytic (FG) muscle fiber pro-
portions: i) foraging mode behavior (FM; e.g., sit-and-wait vs. active foraging vs.350

mixed); ii) predator escape behavior (PE; e.g., active flight vs. crypsis vs. mixed);
and iii) a combined hypothesis of foraging mode and predator escape (FMPE)
that assigns a unique regime to every combination of FM and PE represented in
the dataset. For each hypothesis, they reconstruct a likely phylogenetic history
of these behavioral modes on the phylogeny by conducting ancestral state recon-355
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structions (Figure 3). After fitting the multi-optimum OU models to the muscle
fiber data, they find strong support for the predator escape hypothesis, which is
13.0 AICc units better than the next closest model (FMPE). Such a finding appears
quite reasonable under the “Life-Dinner Principle” (Dawkins and Krebs, 1979),
which suggests that escaping a predator may have a far more direct effect on fit-360

ness than obtaining a food item (Scales et al., 2009).

However, AIC provides only relative support for a model given a set of alterna-
tives (see Pennell et al., 2015, for more on this point in the context of comparative
methods). An examination of the particular configuration of shifts in the three
hypotheses may give pause to researchers familiar with squamates. For example,365

some may want to quibble with the suggestion that the “sit-and-wait” foraging be-
havior of Phrynosoma species, which are often ant-eating specialists that leisurely
lap up passing insects, should be grouped with the “sit-and-wait” tactics of species
such as Gambelia wislizenii, a voracious carnivore that frequently subdues and con-
sumes other lizards close to their own size. Looking at the reconstructions, it is370

also apparent that the PE hypothesis is the simplest model that allows a shift on
the branch leading to Phrynosoma, a group that any herpetologist would identify
as “weird” for a multitude of reasons (indeed, these are the eyeball-socket-blood-
squirters alluded to in the introduction). The question then arises: is the signal in
the dataset for the PE hypothesis driven entirely by the singular evolution of dif-375

ferent muscle fiber composition in Phrynosoma lizards? If so, then any number of
causal factors that differ between Phrynosoma and other lizards could be equally as
likely as predator escape — including foraging mode with a slight reclassification
of character states! We want to emphasize that we are not criticizing any of the
particular choices the researchers involved in this study made. Rather, we argue380

that such quandaries are the inexorable result whenever the primary signal in the
data is due to a singular historical event.

To explore the impact of the distinctiveness of simply being a Phrynosoma
lizard, we developed a novel Bayesian model by building on the R package bayou
(Uyeda and Harmon, 2014). To do so, we consider the macroevolutionary opti-385

mum of a particular species to be a weighted average of past regimes, as is typical
in all OU models with discrete shifts in regimes (Butler and King, 2004; Beaulieu
et al., 2012), but in our case, this weighted average is itself a weighted average
of two differing configurations of the locations of adaptive shifts (often referred
to as “regime paintings”). One configuration assumes that shifts in the optima390

have occurred where a discrete character, hypothesized to shape the evolutionary
dynamics of the continuous character, is reconstructed to have shifted. The other
configuration is estimated directly from the data using bayou’s reversible-jump
MCMC (RJMCMC) algorithm.

E[Yi] = w(ΨPE(α)θPE) + (1− w)(ΨRJ(α)θRJ) (5)

This equation describes the expected value of a trait for species i, Yi as a395

weighted average between the expected trait value under the PE hypothesis and
the expected trait value under the reversible-jump estimate of shift configurations.
The vectors θPE and θRJ are the values of the trait optima for the NPE and NRJ
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Figure 3: A reanalysis of the Scales et al. (2009) dataset of fast glycolytic muscle
fiber fraction across 22 squamate lizards. A) A traitgram depicting the distribu-
tion of the data and the reconstructed regimes for the best-fitting Predator-Escape
(PE) hypothesis (blue = cryptic, yellow = active flight, purple = mixed). B) Pos-
terior distributions of weights estimated for the PE hypothesis when mixed with
a RJMCMC analysis for the original empirical data (purple), data simulated un-
der the best-fitting estimated parameters for a Phrynosoma-only shift model (blue),
and a dataset simulated under the best-fitting estimated parameters for the full
PE model (yellow). Notice that the empirical dataset has intermediate weights. C)
Posterior probabilities for all branches of the phylogeny estimated for the original
empirical data (X-axis) and the simulated dataset under the PE hypothesis (solid
line is the 1 to 1 line). D) We estimate a high posterior probability on a shift in the
genus Phrynosoma from the empirical data only (red circle), indicating that while
the PE hypothesis explains some patterns in the data, it does not fully explain the
shift present in the behaviorally and ecologically unique genus Phrynosoma.
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adaptive regimes, while ΨPE and ΨRJ correspond to the standard OU weight ma-
trices that average over the history of adaptive regimes experienced by species i400

over the course of their evolution, with older regimes being discounted propor-
tional to the OU parameter α (for a full description of how these weight matrices
are derived, see Hansen, 1997; Butler and King, 2004).

In our model, the regime painting for our a priori hypothesis ΨPE is fixed,
while we estimate the parameters the configuration of shifts for the reversible-405

jump component, ΨRJ , as well as the values for the optima θPE and θRJ ; and stan-
dard parameters for the OU model such as α and σ2 which are assumed constant
across the phylogeny. We also estimate the weight parameter w, which deter-
mines the degree of support for the PE hypothesis against the reversible-jump
regime painting. We place a truncated Poisson prior on the number of shifts for410

the reversible-jump analysis to be quite low, with a λ = 0.5 and a maximum of
λ = 10 (meaning that we are placing a prior expectation of 0.5 shifts on the tree).
Furthermore, we place a symmetric β-distributed prior on the w parameter with
shape parameters of (0.8, 0.8). Additional details on the model-fitting can be found
in the supplementary material.415

We then fit this model to 3 different datasets: i) the original Scales data; ii)
data simulated using the Maximum Likelihood estimates for the parameters of
the PE model fitted to the Scales dataset; and iii) data simulated under the Maxi-
mum Likelihood estimates for a “Phrynosoma-only” model in which a single shift
occurs leading to the genus Phrynosoma. We could then compare the posterior420

distribution of the weight parameter w to evaluate the weight of evidence for each
hypothesis in each dataset.

We find that our approach places intermediate weight on the PE hypothesis for
the original Scales dataset. When we simulated data under the PE hypothesis, the
estimated weight given to the PE hypothesis was likewise high (Figure 3B). When425

data were simulated under the Phrynosoma-only hypothesis, the weight given to
the PE hypothesis was low, as predicted (Figure 3B). Furthermore, the RJ portion
of the model fit to the Scales dataset recovers only a single highly supported shift
on the stem branch of the Phrynosoma lizards (Figure 3C and 3D). This suggests
that the PE hypothesis has statistically supported explanatory power as its esti-430

mated weight is well bounded away from 0. But it does not explain everything. In
particular, the PE hypothesis fails to fully explain the shift leading to the Phryno-
soma lizards (Figure 3C and 3D), which are more extreme than they should be
considering the other taxa in their regime (there is only one, Holbrookia maculata,
which does not show such an extreme shift). Consequently, the answer to whether435

differences in predation escape behavior are driving the evolution of these traits
is neither yes or no, but somewhere in between. This more subtle view of muscle
fiber evolution conforms quite well to the conclusions drawn in the original paper
and our biological intuition about the genus Phrynosoma — variation in predator
escape behavior is a good explanation for observed patterns of muscle fiber diver-440

gence, but Phrynosoma are weird and other factors likely are influencing their trait
evolution beyond predator escape.

We can conduct the same analysis where we test not the PE hypothesis, but
the Phrynosoma-only hypothesis against the reversible-jump hypotheses (Figure
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4). In this case, we recover high weights for the Phrynosoma-only hypothesis re-445

gardless if the model is fit to the Scales dataset, or to data simulated under either
the Phrynosoma-only hypothesis or the PE hypothesis. This is because account-
ing for the Phrynosoma shift is the primary feature of all three datasets (though
weights are somewhat higher for data simulated under the Phrynosoma-only hy-
pothesis than others). It may appear unsatisfying that such high weights are450

recovered for the a priori hypothesis when a singular event, which is easily re-
constructed by the RJMCMC, explains the distribution of the data just as well.
However, the analysis favors the Phrynosoma-only hypothesis simply because of
the vague priors placed on the number and location of shifts in the reversible-
jump analysis. Guessing correctly which of the 42 branches on the phylogeny has455

a single shift with our hypothesis is rewarded by the analysis (we will return to
this issue in Case Study III). In the original Scales dataset, there are weakly sup-
ported shifts in the clades leading to the sister group of Phrynosoma lizards, and
the branch leading to Acanthodactylus scutellatus and Aspidoscelis tigris. Finally, we
can combine all three hypothesis simultaneously by placing a Dirichlet prior on460

the vector w = [wRJ , wPE, wPhrynosoma]. Doing so recovers strongest support for
the Phrynosoma-only model, intermediate support for the PE hypothesis, and very
little weight on the reversible-jump hypothesis, which has no strongly supported
shifts (Figure 5).

By combining phylogenetic natural history approaches with our a priori hy-465

potheses, we show that we can account for rare evolutionary events that are not
well-accounted for by our generating model. In the case of the PE hypothesis,
we show that it does indeed have explanatory power beyond simply explaining a
singular shift in Phrynosoma and support the original authors’ conclusions. How-
ever, the intermediate result likely only occurs because the PE hypothesis places470

Phrynosoma in the same regime as Holbrookia maculata, which does not share the
extreme shift that is found in Phrynosoma. Were this not the case (as in our fitting
of the Phrynosoma-only hypothesis), it would still require visual inspection of the
phylogenetic distribution of traits under the hypothesis in question to determine
that a singular evolutionary event is driving support for a particular model. As475

discussed above, given a large enough tree such a priori hypotheses are likely
to be strongly supported; if you can predict which one branch out of many will
contain a shift then you may be on to something. But given the dangers of ascer-
tainment bias and our biological intuition, we find this interpretation unsatisfying
(Maddison and FitzJohn, 2015). We discuss this problem more in Case Study III.480

Nevertheless, we show the value in combining a hypothesis testing framework
with a natural history approach to identifying patterns of evolution. We show
here that allowing for unaccounted shifts can provide a stronger test and more
nuanced conclusions regarding the support for a particular predictor driving trait
evolution across a phylogeny. Furthermore, predictors which provide additional485

explanatory power (if for example, regimes are convergent or if predictors vary
continuously) will be even more favored over natural history models. Thus, our
framework certainly does not automatically reward more complex, freely esti-
mated models. Rather, the great uncertainty in possible models is incorporated as
a prior on the arrangement of shifts and is limited in explanatory power, some-490

thing that researcher-driven biological hypotheses are much more capable of ac-
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Figure 4: A reanalysis of the Scales et al. (2009) dataset of fast glycolytic muscle
fiber fraction across 22 squamate lizards against the Phyrnosoma-only hypothesis.
A) A traitgram depicting the distribution of simulated data under the Phyrnosoma-
only hypothesis (yellow = squamates, purple = Phyrnosoma). B) Posterior distribu-
tions of weights estimated for the Phyrnosoma-only hypothesis when mixed with
a RJMCMC analysis for the original empirical data (purple), data simulated un-
der the best-fitting estimated parameters for a Phrynosoma-only shift model (blue),
and a dataset simulated under the best-fitting estimated parameters for the full
PE model (yellow). All analysis recover high weights. C) Posterior probabilities
for all branches of the phylogeny estimated for the original empirical data (X-axis)
and the simulated dataset under the PE hypothesis (dotted line is the 1 to 1 line).
D) Modest support for two additional shifts are recovered for the empirical data
only (red circles).
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Figure 5: A reanalysis of the Scales et al. (2009) dataset of fast glycolytic muscle
fiber fraction across 22 squamate lizards against with both the Phyrnosoma-only
hypothesis and the PE hypotheses. Weights are depicted for each of the three
datasets A) the original Scales dataset B) A dataset simulated under the Phryno-
soma-only model C) A dataset simulated under the PE hypothesis. In B and C,
the correct model receives highest support with neither of the alternatives being
well-supported. In the original Scales dataset, the Phrynosoma-only hypothesis
receives the most weight (indicating a singular shift best explains the patterns ob-
served in the data), while an intermediate weight is given to the PE hypothesis
(which explains a good amount of the remaining variation). In no analysis did the
reversible-jump portion recover support for any additional shifts.
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complishing.

Case Study III: Darwin’s scenario and unreplicated bursts

We now turn to a case where both the explanatory variable and the focal trait
are discrete characters. In comparison to the continuous cases described above,495

we expect the signal for evolutionary covariation between such characters to be
more difficult to detect. However, as we mention above, Maddison and FitzJohn
(2015) recently demonstrated that commonly used methods return significant cor-
relations all the time — and in scenarios that seem to defy our statistical intu-
ition. For example, Pagel’s (1994) correlation test would find the phylogenetic500

co-distribution of milk production and middle ear bones highly statistically sig-
nificant even though they both are a defining characteristic of mammals (an infer-
ence so obviously dubious that even Darwin 1872 warned against it). This seems
to be a clear case of phylogenetic pseudoreplication (Maddison and FitzJohn, 2015;
Read and Nee, 1995). Maddison and FitzJohn describe the goal of correlation tests505

as finding the “weak” conclusion that “the two variables of interest appear to be
part of the same adaptive/functional network, causally linked either directly, or
indirectly through other variables” (p. 128). They assert that with our current
approaches, we cannot even clear this (arguably low) bar. Here we delve into this
idea a bit deeper. What constitutes good evidence of such a relationship? And is510

this a reasonable goal for comparative analyses?

Maddison and FitzJohn highlight two hypothetical situations, that they refer
to as “Darwin’s scenario” and an “unreplicated burst”. They argue provide little
evidence for an adaptive/functional relationship between two traits because the
patterns of codistribution only reflect singular evolutionary events (Figure 1). In515

Darwin’s scenario, two traits are coextensive on the phylogeny, meaning that in
every lineage where one trait is in the derived character state, the other trait is
as well. As an example, consider the aforementioned phylogenetic distribution
of middle ear bones and milk production in animals; all mammals (and only
mammals) have middle ear bones and produce milk. These traits (depending520

on how they are defined) have only appeared once on the tree of life and both
occurred on the same branch (the stem branch of mammals). The unreplicated
burst scenario is identical to Darwin’s scenario except that rather than a single
transition occurring in both traits, there is a single transition in the state of one
trait (e.g., the gain of middle ear bones) and a sudden shift in the transition rates525

in another trait (e.g., the rates by which external testes are gained and lost across
mammals). Note that these scenarios do not differ qualitatively from Felsenstein’s
worst-case scenario nor the Phrynosoma-only model scenario from Case Studies I
and II (Figure 1). In all three scenarios, something rare and interesting happened
on a single branch and the distribution of traits at the tips of the phylogeny reflects530

this.

In their paper, Maddison and FitzJohn (2015) simulated comparative data and
reported a preponderance of significant results using Pagel’s correlation test (1994)
and Maddison’s (1990) concentrated changes test. In order to hone our intuition
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of the problems they present, we dig a bit deeper and investigate the mathemat-535

ical reason that Pagel’s discrete correlation test (1994) returns a significant result
in Darwin’s scenario. (We should note here that Brookfield [1993] conducted a
similar analysis that was more-or-less completely overlooked.) To make the prob-
lem tractable, we assume that the traits were selected without first looking at their
phylogenetic distribution, a condition that we (as well as Maddison and FitzJohn,540

2015) suspect is rarely met in practice (more on this below).

Again, under Darwin’s scenario, there is a single concurrent origin of two
traits leading to perfect codistribution across the phylogeny (a condition we de-
fine mathematically as event A). What is the probability that both traits X and
Y undergoing a single, irreversible shift on the same branch Li under a model545

where the two traits are independent (Mind)? And what is the probability of this
occurring if the two traits are actually evolving in a correlated fashion (Mdep)?

Under the independent model, both traits X and Y have to switch from 0 to 1
in the same branch once. We also know that there was at least one transition in
each of the traits, since we would not study traits if there weren’t any changes in550

the phylogeny. The probability of this happening is

P(Mind) = P((X(t), Y(t)) = (1, 1)|(X(0), Y(0) = (0, 0),
Nx(t) = 1, Ny(t) = 1, Nx(T) ≥ 1, Ny(T) ≥ 1, Li)

(6)

where Nx and Ny are the stochastic processes that denote the number of shifts of
trait X and Y at time t respectively. Li is the branch on which both transitions
occur, where Li has a branch length of ti. The sum of all branch lengths is T. Since
X and Y are independent, the joint probability of X and Y changing at the same555

time is simply the product of probabilities of each event, so the above expression
becomes

P((X(ti), Y(ti)) = (1, 1)|(X(0), Y(0) = (0, 0), Nx(ti) = 1, Ny(ti) = 1, Nx(T) ≥ 1, Ny(T) ≥ 1) =
= P((X(ti), Y(ti)) = (1, 1)|(X(0), Y(0)) = (0, 0))×
× P(Nx(ti) = 1, Ny(ti) = 1|Nx(T) ≥ 1, Ny(T) ≥ 1)×

× P(Nx(T) ≥ 1, Ny(T) ≥ 1)
= P(X(ti) = 1|X(0) = 0)P(Y(ti) = 1|Y(0) = 0)×

× P(Nx(ti) = 1|Nx(T) ≥ 1)P(Ny(ti) = 1|Ny(T) ≥ 1)×
× P(Nx(T) ≥ 1)P(Ny(T) ≥ 1) =

= [eQxti ](1,2)[e
Qyti ](1,2)P(Nx(ti) = 1|Nx(T) ≥ 1)P(Ny(ti) = 1|Ny(T) ≥ 1)×

× P(Nx(T) ≥ 1)P(Ny(T) ≥ 1)

where Qx and Qy are the infinitesimal probability matrices that describe the tran-
sition rates between states in the independent case (these Q matrices are used to
conduct Pagel’s correlation test, see Supplementary Material for details on matrix560

definitions under the independent case) and the subscripts on [eQyti ](1,2) indicate
row 1, column 2 of the resulting probability matrix. We now consider the outcome
of maximizing this expression under a likelihood framework. Since there is no ev-
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idence of a transition from 1 to 0 in either trait, the maximum Likelihood estimate
(MLE) for the transition rates qx

10 and qy
10 will be 0. Meanwhile, the MLEs (qx

01, qy
01)565

for the transitions from 0 to 1 in both traits will be small (because these events are
so rare, occurring only once, see the small probability of a single shift occurring
in the Supplementary Material) but positive since one transition does occur on Li.
Given the resulting parameter estimates of (qx

01, qy
01), it is likely that a great many

realizations of this process would likely result in no lineages evolving the traits570

of interest at all — replaying the tape of life, under Markovian assumptions, will
likely lead to many worlds where milk and middle ear bones don’t exist at all.
However, we do not study traits that don’t exist. Because of this ascertainment
bias, the probability of at least one switch occurring for traits that are unlikely to
evolve at all (i.e. with very small qx

01 and qy
01) should be nearly exactly one, that575

is P(Nx(t) ≥ 1) ≈ 1 when accounting for total branch length T of the tree (see
Supplementary Material for exact derivation of this probability). The probability
of exactly one transition of each trait occurring in the lineage Li given that at least
there is one transition in the tree is simply uniform P(Nx(ti)|Nx(T) ≥ 1) = ti/T
(derived from a Poisson process, see Supplementary Material). Furthermore, with580

rare events the estimates of the probabilities of both traits changing only once in
lineage Li conditional upon observing Darwin’s scenario (under the independent

model Mind) is also one ( eQxti
(1,2) =

ˆqx
01

ˆqx
01+

ˆqx
10
−

ˆqx
01

ˆqx
01+

ˆqx
10

e−( ˆqx
01+

ˆqx
10)ti = 1− e− ˆqx

01ti ≈ 1 and

eQyti

(1,2) =
ˆqy
01

ˆqy
01+

ˆqy
10

−
ˆqy
01

ˆqy
01+

ˆqy
10

e−(
ˆqy
01+

ˆqy
10)ti = 1− e−

ˆqy
01ti ≈ 1), meaning that at the end the

probability of the independent model reduces to585

P(Mind) = P(Nx(ti)|Nx(T) ≥ 1)P(Ny(ti)|Ny(T) ≥ 1) = (ti/T)2 (7)

where ti is the branch length of branch Li containing both shifts (Karlin and Taylor,
1981).

In contrast, for the completely dependent model Mdep, it is enough to follow
what happens in a single trait since the second will just simply change along.
Therefore:590

P(Mdep) = P((X(t), Y(t)) = (1, 1)|(X(0), Y(0) = (0, 0), Nx(t) = 1,

Ny(t) = 1, Nx(T) ≥ 1, Nx(T) ≥ 1, Li) = (ti/T)
(8)

Thus, the test statistic used in the likelihood ratio test comparing Mind and
Mdep is simply proportional to the ratio of the length of the branch where the
shift occurred to the total length of the tree (i.e., the probability of two events
happening on the same branch equation (Eq. 7) vs. the probability of one event
happening on the branch (Eq. 8).595

2(lnL(Mdep)− lnL(Mind)) = 2(ln(ti)− ln(T))− 4(ln(ti)− ln(T))

= 2(ln(T)− ln(ti))
(9)

In other words, the results of the analysis are predetermined. Under Darwin’s
scenario, including additional taxa in the analysis will increase the support for the
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dependent model simply as a consequence of increasing the total length of the
tree (i.e., the difference between ln(T) and ln(ti) will get bigger).

The assumptions used to derive this result differ very slightly from those used600

in available software; however, we can use simulation to test the validity of our
result and to demonstrate that this is the mathematical reason that Pagel’s test
returns a significant result. Using the R package diversitree (FitzJohn, 2012), we
simulated a set of 20 taxon trees where both traits underwent a irreversible tran-
sition on a single, randomly chosen, internal branch. We then fit a Pagel model605

with constrained (Mdep) and unconstrained (Mind) transition rates. We also con-
strained the root state in both traits to 0, rates of losses of both the traits to 0,
and gain rates in the dependent model following the gain of the other trait to be
extremely high. Plotting the empirically estimated differences in the MLEs against
the predictions making the simplifying assumptions above reveals a strong modal610

correlation between them (Fig. 6). Differences likely reflect the fact that we have
not explicitly made the assumption that P(Nx(t) ≥ 1) = P(Ny(t) ≥ 1) ≈ 1
when we fit the model with diversitree. Furthermore, we compare here only
fully dependent and independent models. This can be seen when calculating
the probability of one switch in each trait P(Nx(t) = 1, N(t)y = 1). In the615

fully dependent case that simply becomes P(Nx(t) = 1) , in the independent
case it becomes P(Nx(t) = 1)P(Ny(t) = 1) but in the correlated case it becomes
P(Ny(t) = 1|Nx(t) = 1)P(N(t)x = 1) 6= 1 affecting the likelihood ratio test based
on estimations of the correlation (see Supplementary Material). However, such
intermediate cases will only introduce slight differences and may not be distin-620

guishable from the fully dependent case under Darwin’s Scenario (though they
will be important in more intermediate cases, see Supplementary Material).

Maddison and FitzJohn (2015) hinted that the coincident occurrence of single
events could be a way of measuring the evidence for a correlation, but did not
work out the details as we have done here. The key to understanding this result625

is to recall Gould and Eldredge’s famous dictum (1977) that “stasis is data”. The
remarkable coincidence is not just that the two characters happened to evolve on
the same branch but that they were never subsequently lost. For even a mod-
estly sized tree, this coincidence is so unlikely that the alternative hypothesis of
correlated evolution is preferred over the null. It is therefore not completely un-630

reasonable that Pagel’s test tells us that these traits have evolved in an entirely
correlated fashion.

However, one key consideration should make us suspect of this line of reason-
ing. As Maddison and FitzJohn (2015) point out, the traits we use in comparative
analyses are not chosen independently with respect to their phylogenetic distri-635

bution (as we assumed in our analysis). Rather, researchers’ prior ideas about
how traits map unto trees likely inform which traits they choose to test for corre-
lated evolution. For example, it is common practice among systematists to search
for defining and diagnostic characteristics for named clades; these type of traits
are of especial interest and are likely the same sorts of traits that are researchers640

might include in comparative analysis, thereby greatly increasing the likelihood
of finding traits with independent, unrelated origins that align with Darwin’s sce-
nario. We agree with Maddison and FitzJohn (2015) that this type of ascertainment
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Figure 6: Darwin’s scenario–the singular origin of two coextensive traits on the
phylogeny–represents a boundary case to finding the correlation between discrete
characters. Pagel’s correlation test for Darwin’s scenario can essentially be re-
duced to the difference in probability between choosing the same branch twice vs.
choosing the branch only once. We demonstrate that here, showing our predicted
differences in log likelihood between the independent and dependent trait models
(y-axis) against the empirical estimates of the difference in log likelihood between
models for simulated Darwin’s scenarios on different phylogenies. Dotted line
indicates equality. Points falling off the line represent slight violations of the as-
sumptions we used to derive our prediction. Particularly, we assume that the rates
of gain of the traits are so low that only one shift is ever observed. The color of the
points indicates cases where this assumption is violated, as outlying points with
max(Q) values much greater than 1/T (where only 1 shift is expected) are much
more likely to fall off the predicted line.
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bias is likely prevalent in empirical studies, even if it is usually more subtle than
testing for a correlation between milk and middle ear bones. However, we dis-645

agree with them that this renders establishing correlations in intermediate cases
hopeless. Understanding the exact mathematical reasons why Pagel’s test infers
a significant correlation in a given case provides a clear boundary condition that
can help develop quantitative corrections for ascertainment bias. Furthermore, the
issues of ascertainment bias are likely to rapidly dissipate as we move away from650

the boundary case of Darwin’s scenario. As a result, extending our analytical ap-
proach to more complicated scenarios will likely provide an even more meaningful
estimate of the weight of evidence supporting a hypothesis of correlation.

The structure of a solution

We have shown in the three Case Studies that many PCMs, including those that655

form the bedrock of our field, are susceptible to being misled by rare or singular
evolutionary events. This fundamental problem has sowed doubts about the suit-
ability and reliability of many methods in comparative biology, even if it was not
obvious that these issues were connected. But again, the fact that apparently dif-
ferent issues share a common root makes us hopeful that there can be a common660

solution.

As we illustrate through our Case Studies, we think that accounting for id-
iosyncratic evolutionary events will be an essential step towards such a solution.
However, we will need to think hard about how best to model such events. In
Case Study II, we present one solution to the problem that involves explicitly665

accounting for the possibility of unaccounted adaptive shifts using Bayesian Mix-
ture modeling. We believe this approach has a great deal of promise as it provides
simultaneous identification of biologically interesting shifts and the explanatory
power of a particular hypothesis.

However, we do not claim that such an approach is the only solution or that670

it solves the problem completely. Indeed, we find that in all three Case Studies,
the uniting philosophy is to consider models that account for idiosyncratic back-
ground events, rather than strict adherence to a particular methodology. For exam-
ple, we highlighted in the introduction that we think HMMs (following Beaulieu
et al., 2013; Beaulieu and O’Meara, 2016) are a potentially powerful, and widely675

applicable solution, even though we did not consider these in detail here.

And there are still other potential solutions which we have not even mentioned
yet. In our own work (Uyeda et al., 2017), we have used a strategy similar to the
Bayesian Mixture Modeling but instead of modeling the trait dynamics as a joint
function of our hypothesized factors and background changes (represented by680

the RJMCMC component), we did the analyses in a two-step process: first, we
used bayou (Uyeda and Harmon, 2014) to locate shifts points on the phylogeny,
then used Bayes Factors to determine if predictors could “explain away” shifts
found through exploratory analyses. For PGLS and other linear modeling ap-
proaches, modeling the residuals using fat-tailed distributions (Landis et al., 2012;685

Blomberg et al., 2012; Elliot and Mooers, 2014; Duchen et al., 2017) may mitigate
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the impact of singular evolutionary events on the estimation of the slope (also see
Slater and Pennell, 2013, for an alternative approach using robust regression). Fur-
thermore, we also think that rigorous examination of goodness-of-fit and model
adequacy following any comparative analysis is critical for finding unforeseen690

singular events driving signal in the dataset (Garland et al., 1992; Boettiger et al.,
2012; Slater and Pennell, 2013; Pennell et al., 2015). Which of these solutions (in-
cluding those that were included in our Case Studies and those that were not) will
be the most profitable to pursue will probably differ depending on the question,
dataset and application — we anticipate that there will not be a one-size-fits-all695

solution — but we do think that any compelling solution will involve a unification
of phylogenetic natural history and hypothesis testing approaches.

But we want to take this a step further. While it is useful to account for phy-
logenetic events in our statistical models, a greater goal of comparative biology
should be explain why these events exist in the first place. We return to Maddi-700

son and FitzJohn’s (2015) “weak” goal of finding whether or not “two variables
of interest appear to be part of the same adaptive/functional network, causally
linked either directly, or indirectly through other variables.” We ultimately dis-
agree with them that this constitutes a weak conclusion; the challenges of making
these inferences from any comparative dataset are significant. Furthermore, we705

find the often repeated axiom “correlation does not mean causation” to be un-
helpful. While the axiom is accurate in the strict sense, we believe that it obscures
many logical and philosophical challenges to analyzing phylogenetic comparative
data that are often ignored. And as is clear from reading the macroevolutionary
literature, biologists do not shy away from forming causal statements from correl-710

ative data regardless. It therefore seems worthwhile to take seriously the question:
“What would it take to infer causation from comparative data?” And even if we
are to conclude that all the evidence for a hypothesized causal relationship stems
from one or a few evolutionary events, is this finding biologically meaningful?

Phylogenies are graphical models of causation715

One way to gain a foothold on the problem of causation is to build, commu-
nicate, and analyze phylogenetic comparative methods in a graphical modeling
framework — a perspective that has recently been advocated by (Höhna et al.,
2014). Graphical models that depict hypothesized causal links between variables
make explicit key underlying assumptions that may otherwise remain obscured;720

indeed, the precise assumptions of PCMs were hotly debated in the early days of
their development (Westoby et al., 1995b,a; Nee et al., 1996; Harvey et al., 1995;
McNab, 1988) and remain poorly understood to this day (Hansen and Orzack,
2005; Hansen and Bartoszek, 2012). As examples of how using graphical models
force us to be more clear in our reasoning, consider the graphs in Figure 7. We725

depict three different models of causation that have phylogenetic effects that each
require alternative methods of analysis to estimate the effect of trait X on trait Y. In
our example, a four species phylogeny provides possible pathways for causal ef-
fects, but variables may have entirely non-phylogenetic causes or may be blocked
from ancestral causes by observed measurements, rendering the phylogeny irrele-730
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vant (e.g. Figure 7A). Edges connect nodes and indicate the direction of causality,
where the nature of phylogenies allows us to assume that ancestors are causes of
descendants, and not vice versa. This asymmetry results in a what is known as
a probabilistic Bayesian Network (a type of directed acyclic graph, or DAG) that
predicts a specific set of conditional probabilities among the data.735

Depending on the Bayesian network structure, the appropriate method of anal-
ysis can range from a non-phylogenetic regression (Figure 7A), to commonly used
comparative methods such as Phylogenetic Generalized Least Squares (PGLS, Fig-
ure 7B), to methods that require modeling both the evolutionary history of inter-
action of both trait X and trait Y (Figure 7C) (Hansen, 1997; Butler and King, 2004;740

Hansen et al., 2008; Revell, 2010; Hansen and Bartoszek, 2012). We emphasize that
this implies that the use of phylogeny in interspecific comparisons is an assump-
tion that depends on the precise question being asked and the hypothesized causal
network. It is often assumed and asserted that PCMs are simply a more rigorous
version of standard regression. This is simply not true.745

In cases where phylogeny does matter, we must specify the generating model
for unobserved states in our causal graphs. For example, it is common to assume a
BM model for residual variation in PGLS or that ancestral states are reconstructed
using stochastic character mapping in OU modeling of adaptation. However, BM
and other continuous Gaussian or Markov processes are only a few of the many750

types of processes that may generate change on a phylogeny. We have shown
that discontinuous processes and rare, singular events are poorly handled in our
current framework and lead to much confusion about what exactly, our statisti-
cal methods are allowing us to infer from comparative data. Such models can be
similarly illustrated using graphical models (Figure 8). By making our models755

explicit, we see that the phylogeny is best thought of as a pathway for past fac-
tors to causally influence the present-day distribution of observed states. These
“singular-event” models are alternatives to the more continuous models we typi-
cally examine. Furthermore, representing our models as graphs, we are poised to
take advantage of the sophisticated approaches for causal reasoning (e.g., Pearl,760

1995, 2009; Sugihara et al., 2012; Shipley, 2016) that have been embraced by fields
like computer science but largely ignored by comparative biologists (a rare ex-
ception is the recent introduction of phylogenetic path analysis; Hardenberg and
Gonzalez-Voyer, 2013).

One clear case where such graphical modeling would improve inference are765

cases where considering phylogeny reverses the sign of the relationship between
two variables. This is precisely what Nee et al. (1991) found looking at the rela-
tionship between body size and abundance in British birds; depending on how
they aggregated the data (means of species, means of genera, means of tribes,
etc.) the direction of correlation flipped back and forth. This reversal in the sign770

of the relationship between two variables X and Y when conditioning on a third
Z is a general, and widely studied, statistical phenomenon known as “Simpson’s
paradox” (Blyth, 1972). Nee and colleagues (1991; 1996) hold up their findings of
the British bird study to be emblematic; in their view, the presence of Simpson’s
paradox in their data clearly implies that phylogeny is key to making sense of775

interspecific data.
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Figure 7: Graphical models of alternative causal relationships between a predictor
(X) and a trait of interest (Y). Note that each node has independent, uncorrelated
error as an input, but these have not been shown for clarity. A) X follows the
phylogeny with observed states (white) and unobserved ancestral states (gray)
and is a cause of trait Y. However, the phylogeny and pattern of evolution of X
are irrelevant, and this graph can be modeled with methods such as Ordinary
Least Squares regression. B) The trait Y has unobserved causes (Ei) that follow the
phylogeny (gray) that can be modeled using, for example, Brownian Motion. The
trait X is a cause of Y. This graph can be modeled using methods such as PGLS
and PIC. C) The trait Y evolves on the phylogeny and is affected by trait X all
throughout its history. Thus, the history of both X and Y must be modeled (e.g.
Brownian Motion of X and Ornstein-Uhlenbeck for Y). This graph can be modeled
using methods such as SLOUCH.
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However, as Pearl (2014) has convincingly demonstrated, Simpson’s paradox
is not really paradoxical at all when considered from the standpoint of Bayesian
Networks. In fact, Pearl shows that the appropriate way to analyze the data de-
pends crucially on what one assumes is causing what. To understand how causal780

inference resolves Simpson’s Paradox, we now present a rather artificial, but nev-
ertheless illustrative example (Pearl, 2009). Consider three traits: Body size (B),
abundance (N) and migratory behavior (M) in birds. Given the Bayesian Net-
works presented in Figure 9, we have two possible hypotheses for the causal re-
lationships between the traits. We further consider the possibility that we do not785

have adequate data on M, and thus only B and N are observed. Our goal is to
estimate the causal effect of B on N. In Figure 9A, body size influences whether or
not species become migratory, and both migratory status and body size influence
species abundance (but in opposite directions). Furthermore, under this scenario,
both body size and migratory status will have phylogenetic signal. We can evolve790

traits along the phylogeny depicted in Figure 9C and obtain a bivariate plot that
looks like Figure 9D. Under the alternative Bayesian Network, migratory behav-
ior still has a positive effect on species abundance, but also increases body size,
which in turn causes decreases species abundance. These two causal structures are
observationally equivalent — meaning that any distribution simulated under one795

can be replicated under the alternative causal structure. Therefore, both networks
can produce datasets with phylogenetic signal in both body size and migratory
behavior, and both can produce a dataset with the distribution in Figure 9D (see
Supplementary Material for additional details on generating Figure 9).

How then should we analyze the data if we want to understand the effect of800

body size on species abundance? If we assume that body size influences migra-
tory behavior, then increasing body size (for example, if natural selection leads a
species to become larger), will increase the probability of that species becoming
migratory — and the two opposing effects will result in relatively little change
in species abundance. Therefore, we should perform Ordinary Least Squares re-805

gression to estimate the net causal effect of increasing body size. We also note
that all the phylogenetic signal is coming from the evolution of body size, which
becomes irrelevant once we observe body size, and thus we do not need to per-
form PGLS. By contrast, if migratory behavior causes changes in body size, then
selecting for an increase in body size will not result in a lineage changing their810

migratory status at all. Therefore, we are assured that increasing body size will
likewise always decrease species abundance. Consequently, we should perform
PGLS to account for the phylogenetic signal in the residual variation imposed by
(unobserved) migratory status.

By working through the logic of comparative analyses using graphical models815

we have come to essentially the same line of reasoning of Westoby et al. (1995b,a),
who, in the early days of PCMs, challenged the growing consensus that phylogeny
needed to be included in any interspecific comparison — a consensus which has
only gotten stronger as the years passed by (also see McNab, 2003, for a related
critique) . Westoby and colleagues were concerned that including phylogeny in in-820

terspecific comparisons necessarily favored some causal explanations over others.
At the time, their critique was dismissed as innumerate hogwash (Harvey et al.,
1995; Nee et al., 1996) and this evaluation has largely stuck. However, from our
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Figure 8: Graphical models of Darwin’s Scenario between a predictor (X) and a
trait of interest (Y). Note that each node has independent, uncorrelated error as
an input, but these have not been shown for clarity. A) Singular event model.
Here two independent factors cause a change on ancestral states X3 and Y3 (K and
L respectively). However, they are independent events and coincidentally occur
at the same point on the phylogeny. B) Similar to the previous model, but K
and L are causally linked. Thus, whenever K occurs, it probabilistically causes L
which causes a shift in Y. If only one event occurs however, this model is only
distinguishable from graph (D) proportional to the probability that events K and
L occur on the same branch (see Case Study III).

example of bird size and abundance, it is apparent that Westoby et al. were right
all along: phylogenetic comparative methods are a powerful tools for drawing in-825

ferences from interspecific data but they necessarily imply some types of causal
structures and negate others. It is too much to ask of our methods to decide what
questions we ought to ask. As Westoby et al. (1995a) put it: "No statistical proce-
dure can substitute for thinking about alternative evolutionary scenarios and their
plausibility" (p. 534).830

Concluding remarks: are our models valid tests of our causal
hypotheses?

By explicitly including phylogeny into our graphical models of causation, we are
forced to reckon with the scope of the inference problem and the ability of our data
to be informative. While most of the statistical assumptions of methods are often835

well-known (e.g., for linear models, we assume that errors have equal variance
and are normally distributed, etc.), Gelman and Hill (2006) argue that there is a
more fundamental assumption — validity of data — that is almost always implicit
and often overlooked

“Most importantly, the data you are analyzing should map to the re-840

search question you are trying to answer. This sounds obvious but
is often overlooked or ignored because it can be inconvenient. Opti-
mally, this means that the outcome measure should accurately reflect
the phenomenon of interest, the model should include all relevant pre-
dictors, and the model should generalize to the cases to which it will845
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Figure 9: Simpson’s paradox in phylogenetic comparative methods. Panels (A)
and (B) depict two alternative Bayesian Networks. In (A), body size is a cause of
both species abundance and migratory behavior, and trait B evolves on the phy-
logeny by a process (e.g. Brownian Motion) represented by Ψ. In (B), body size
still affects species abundance, but migratory behavior itself is a cause of both
body size and species abundance, but the phylogenetic effect is present in migra-
tory behavior (in this case, we simulated with a Brownian threshold model). (C)
A phylogeny similar to that of Darwin’s scenario used to simulate the dataset (D),
with migratory species (black) and non-migratory (white) taxa. The data in (D)
can be generated by either causal structure. However, to estimate the effect of B in
both networks, one must use different analytical approaches. To estimate the net
effect of B on N in network (A), the appropriate method of analysis is OLS regres-
sion (black line). This is because increasing body size will simultaneously decrease
species abundance and increase migratory behavior, which itself increases abun-
dance, leading to a net slight increase in abundance. However, under network (B)
the correct method is PGLS (gray line) as increasing body size will have no effect
on migratory behavior, and unaccounted phylogenetic residual error is present
in the observed data. Here, increasing body size will only have a direct effect of
decreasing species abundance, which is reflected in the estimate of the slope. The
resolution of Simpson’s paradox rests entirely on causal assumptions; which are
immediately apparent from graphical models but difficult to express with stan-
dard mathematical formulae.
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be applied.” (Gelman and Hill, 2006)

We believe that far less discussion in comparative methods has been focused
on the issue of statistical validity of the data collected to the research questions
being posed by a given study. This is in large part because comparative data and
the phylogeny that underly it are largely beyond the control of the researcher, but850

careful consideration of the data is required to understand what research ques-
tions can be reasonably answered. We find that most comparative research ques-
tions have a poorly defined scope of inference: it is unclear to what population a
model or inference should generalize to. If we ask “are fur and middle ear bones
correlated?”, we must also specify “in what organisms?”. Since no organisms855

other than mammals have the particular traits we define as “fur” and “middle ear
bones”, we actually do not need statistics at all to determine whether these traits
are correlated — we have sampled nearly the entire population relevant to the
question! In nature, they are perfectly collinear. If we wish to expand our scope of
inference to hypothetical organisms that evolve fur and/or middle-ear bones we860

are free to do so. However, we have collected a very poor data sample for such a
question. It is not the fault of the statistical method to demonstrate that a poorly
designed experiment does not represent its scope of inference, rather it is our job
as researchers and statisticians to ask whether or not such a relationship addresses
our biological question and whether the sample of data collected is valid for the865

question being asked.

In this paper we have tried to synthesize a wide variety of statistical and philo-
sophical concepts to lay out a roadmap for where we think comparative biology
should go. We certainly do not have all the answers. Of the paths we have ex-
plored, there are many details that need to be worked out, and we fully anticipate870

that there are many alternative paths that we have not even considered. However,
we argue that if we are going to make substantial progress in using phylogenetic
data to test evolutionary hypotheses, we will need to reckon more seriously with
the idiosyncratic nature of evolutionary history, and to more clearly articulate pre-
cisely what we want to test and whether our models and data are suitable for the875

task.

Code Availability

Data and code needed to reproduce all analyses in this manuscript are available
at https://github.com/uyedaj/pnh-ms/.
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Supplementary Methods

A. Case Study I-Supplementary Methods1125

In order to construct phylogenies that correspond to “Felsenstein’s secnario”, we
simulated two phylogenies with a Yule process and a birth rate of 1 for 20 species
and transformed them using Pagel’s λ values of either 0 (polytomies) or 1 (fully
bifurcating). Trees were then scaled to unit height and combined into a single,
two-clade phylogeny with stem branches of equal length (again, unit height). The1130

entire phylogeny was then scaled to unit height so that each clade begins diver-
sifying after 0.5 units of tree height. We ran 200 simulations for each tree type
and shift value (either full polytomies or fully bifurcating) where we simulated a
bivariate Brownian Motion process with two uncorrelated traits with σ2 = 1 for
both traits. We then chose one of the two stem branches and simulated a shift.1135

We tested 10 different values of the shift variance in an increasing sequence such
that each value is 10 times larger than the last, ranging from σ2 = 10−2 to 103,
from an uncorrelated bivariate Normal distribution. Thus, for each combination
of shift variance (10 values) and phylogeny (2 trees) we ran 200 simulations. For
each dataset, we then performed Phylogenetic Independent Contrasts (PICs) and1140

estimated the P-value for the slope of the linear regression, forcing the intercept
through the origin.

B. Case Study II-Supplementary Methods

We analyzed the dataset of Scales et al. (2009) using the trait FG.frac and matched
to the squamate phylogeny of Pyron and Burbrink (2014). While this is a differ-1145

ent phylogeny than was used in (Scales et al., 2009), the topology was identical
and branch length differences were minimal. We implemented a novel approach
for combining hypothesis-testing and exploratory reversible-jump MCMC in the
software package bayou. To do so, we developed a customized R code (available
at https://github.com/uyedaj/pnh-ms).1150

Priors on parameters are as follows: α ∼ half-Cauchy(scale = 0.1); σ2 ∼ half-
Cauchy(scale = 0.1); k ∼ truncated Poisson(λ = 0.5, Kmax = 10); θ ∼ Normal(µ =
0.5, σ = 0.25); w ∼ Beta(shape1 = 0.8, shape2 = 0.8). Each branch of the phylogeny
was given an equal probability of a shift with a uniform probability on a given
branch (i.e. shifts were allowed to occur anywhere on a given branch with equal1155

probability).

In addition to the empirical dataset, we fit each model to two simulated datasets.
First, we simulated under the a Phrynosoma-only model that contained a single
shift at the base of the stem branch leading to the genus Phrynosoma. We chose pa-
rameter values close to the values estimated when fitting a Phrynosoma-only model1160

model to the original Scales dataset. Specifically, we set α = 0.15, σ2 = 0.001,
θroot = 0.6, and θPhrynosoma = 0.3. Second, we simulated a dataset under the PE hy-
pothesis with the same parameters of α and σ2, but with θmixed = 0.5, θ f light = 0.7
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and θcryptic = 0.3. Again, these values are very close to the estimates we obtained
from fitting the PE model to the original Scales dataset.1165

We ran 3 analyses in each of the 3 datasets, resulting in 9 total MCMC chains.
First, we ran the PE hypothesis against the reversible-jump analysis for all 3

datasets. Next we ran the Phrynosoma-only hypothesis against the reversible-jump
analysis for all datasets. Then we ran a model that places a Dirichlet prior on
the weights of all three: PE, Phrynosoma-only and RJMCMC. This prior was set1170

to w ∼ Dirichlet(0.33, 0.33, 0.33) with all other priors being identical to the other
analyses. We ran each MCMC chain for at least 200,000 generations or until ade-
quate effective sample sizes were obtained for all parameters (>100) and inspected
each chain for evidence of poor mixing. Given the small size of the dataset and
very few number of RJMCMC shifts, MCMC chains tended to converge quickly.1175

C. Case Study III-Supplementary Methods and Results

As described in the main text, we used a number of simplifying assumptions to
generate the prediction that the difference in likelihoods between the dependent
and independent cases in Darwin’s scenario is a simple function of the length
of branch Li and the total length of the tree, T. To demonstrate this effect, we1180

simulated Darwin’s scenario and performed constrained Maximum Likelihood
optimizations in an effort to come as close as possible to the generating assump-
tions we made in deriving our result (Figure 6). To do so, we simulated 100

phylogenies under a Yule process with birth rate = 1. We then scaled the tree to
unit height and randomly selected an interior branch at which both traits X and1185

Y were gained. We then estimated the likelihoods for Mind and Mdep as described
in the main text by taking the Maximum Likelihood of 5 replicated optimizations
using the optim method in R. These replicates were performed to help minimize
optimization errors.

As described in the main text, the estimates in Figure 6 were obtained by1190

constraining the models to be either completely dependent or completely inde-
pendent, for rates of gains between traits to be equal, and by constraining losses
of traits to 0 (irreversibility). These assumptions were made based on the ar-
gument that under Darwin’s scenario there is very little evidence to reject these
assumptions. To verify that this is indeed the case, we present the results of an1195

unconstrained model that does not impose these restrictions. Here, the only con-
straint on the model is that we specify that the root state of the model is state
“00” (absence of both traits). Thus, under this model the independent case has 4

transition rates and the dependent case has 8 transition rates (compared to only 1

and 2 in the analysis in the main text, respectively). We used nlminb to maximize1200

the likelihoods of these functions, as the increased number of parameters resulted
in very flat likelihood surfaces and slow optimization—necessitating the use of
bounds (all transition rates were bounded between 0 and 1000). Analyzing the
same simulations as before, we obtain a very similar pattern Figure S1, although
more cases of the dependent model have higher likelihoods than the independent1205

model (as evident by more points falling above the predicted 1-to-1 line). We con-
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clude that the simplifying assumptions we used to obtain our result in Case Study
III is sound, and that the primary reason the dependent model is favored over the
independent model is the difference in placing one event on branch Li and the
probability of placing two events on branch Li.1210

Probabilities of observing one transition in a single branch under inde-
pendent model

Under the independent case we have that the infinitesimal probability matrix for
trait X is simply defined as

Q =

(
−qx

01 qx
01

qx
10 −qx

10

)
(10)

1215

Therefore the probabilities of the continuous-time Markov chain of trait X chang-
ing over time in the phylogeny are defined via P(t) = eQt. In fact, the full prob-
abilities in the irreversible case (when qx

10 = 0) result in transition probability
matrix

P(t) =
(

e−qx
01t 1− e−qx

01t

0 1

)
(11)

1220

Notice that once a branch has switched to state 1 then the probability of the
trait staying in state 1 is also 1 (absorbent state).If we want to calculate the number
of swtiches from 0 to 1 trait X has experienced along the phylogeny we can define
a new stochastic process Nx(t) that follows the number of transitions from 0 to 11225

in time t. This process has a binomial distribution that depends on the number
of branches of the tree B but also the probability of transition from 0 to 1 in an
interval t. That is,

P(N(t) = 1) ∼ Binomial(B, P01(t)) (12)

In the case of rare traits the probability of observing a single event is small
P(N(t) = 1) = B(1− e−qx

01t)(e−qx
01t)B−1 when qx

01 has a small value. In the main1230

manuscript we refer this as the probability of being strike by lighting. However,
the probability of someone being stroke by lighting at least once in a large group
of people is 1. That is reflected in the probability of observing at least one transi-
tion across all the phylogeny, that we denote as the event Nx(t) ≥ 1 in the main
manuscript is simply one minus the probability of zero transitions occurring. Thus1235

P(N(t) ≥ 1) = 1− P(N(t) = 0)

= 1− (1− e−qx
01t)(e−qx

01t)B

≈ 1 when qx
01 is sufficiently small or t is large (13)

The binomial distribution in (12) converges to a Poisson distribution with pa-
rameter λ = B ∗ (1− e−qx

01t) when qx
01 is small and the number of branches B is

large. Once we know there has been at least one transition from 0 to 1 we are

41

.CC-BY-NC 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/222729doi: bioRxiv preprint first posted online Nov. 21, 2017; 

http://dx.doi.org/10.1101/222729
http://creativecommons.org/licenses/by-nc/4.0/


only interested in the location of that single transition. Because the process N(t)
can be also defined via a Poisson process with parameter λ as defined above,1240

we know that the probability of one event occurring in an specific branch Li
is simply a uniform distribution based on the length of that branch. Therefore
P(Nx(ti)|Nx(T) ≥ 1) = ti/T as defined in the main manuscript (see Karlin and
Taylor (1981) full derivation).

Probabilities of observing one transition in a single branch under corre-1245

lated model

In the correlated full model for Pagel is described via an infinitesimal probability
matrix Q with eight parameters representing the possible transitions of traits X
and Y that have states 0 or 1.

Q =


−(q(0,0),(0,1) + q(0,0),(0,1)) q(0,0),(0,1) q(0,0),(1,0) 0

q(0,1),(0,0) −(q(0,1),(0,0) + q(0,1),(1,1)) 0 q(0,1),(1,1)
q(1,0),(0,0) 0 −(q(1,0),(0,0) + q(1,0),(1,1)) q(1,0),(1,1)

0 q(1,1),(0,1) q(1,1),(1,0) −(q(1,1),(0,1) + q(1,1),(1,0))


(14)

1250

In the irreversible case we have that q(0,1),(0,0) = q(1,0),(0,0) = q(1,1),(0,1) = q(1,1),(1,0) =
0, and the Q-matrix from (14) is reduced to four parameters. We are interested in
calculating the probability of both traits moving to state 1. Therefore

P(t) = eQt

=


e−(q(0,0),(0,1)+q(0,0),(1,0)) q(0,0),(0,1)(e

−(qt(0,0),(0,1)+q(0,0),(1,0))−e
−tq(0,1),(1,1) )

(q(0,0),(0,1)+q(0,0),(1,0)−q(0,1),(1,1))

q(0,0),(1,0)(e
−(qt(0,0),(0,1)+q(0,0),(1,0))−e

−tq(1,0),(1,1) )

(q(0,0),(0,1)+q(0,0),(1,0)−q(1,0),(1,1))
pxy

0,1(t)

0 e−tq(0,1),(1,1) 0 (1− e−tq(0,1),(1,1))
0 0 e−tq(1,0),(1,1) (1− e−tq(1,0),(1,1))
0 0 0 1


1255

So the probability that we are interested in is

P((X(t), Y(t)) = (1, 1)|(X(0), Y(0)) = (0, 0)) = pxy
01(t)

= 1−
q(0,0),(0,1)e

−tq(0,1),(1,1)

(q(0,0),(0,1) + q(0,0),(1,0) − q(0,1),(1,1))
−

−
q(0,0),(1,0)e

−tq(1,0),(1,1)

(q(0,0),(0,1) + q(0,0),(1,0) − q(1,0),(1,1))
+

+
e−t(q(0,0),(0,1)+q(0,0),(1,0))(q(0,0),(0,1)q(0,1)(1,1) + q(0,0),(1,0)q(1,0)(1,1) − q(0,1),(1,1)q(1,0)(1,1))

(q(0,0),(0,1) + q(0,1)(1,0) − q(0,1),(1,1))(q(0,0),(0,1) + q(0,0)(1,0) − q(1,0),(1,1))

(15)

When the branch length t is sufficiently large we have that limt→∞ pxy
01(t) = 1

just as the independent and fully dependent cases because e−tα → 0 for any α > 0.
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Figure S1: Darwin’s scenario–the singular origin of two coextensive traits on the
phylogeny–represents a boundary case to finding the correlation between discrete
characters. Pagel’s correlation test for Darwin’s scenario can essentially be re-
duced to the difference in probability between choosing the same branch twice vs.
choosing the branch only once. We demonstrate that here, showing our predicted
differences in log likelihood between the independent and dependent trait models
(y-axis) against the empirical estimates of the difference in log likelihood between
models for simulated Darwin’s scenarios on different phylogenies. Dotted line
indicates equality. Points falling off the line represent slight violations of the as-
sumptions we used to derive our prediction. Particularly, we assume that the rates
of gain of the traits are so low that only one shift is ever observed. The color of the
points indicates cases where this assumption is violated, as outlying points with
max(Q) values much greater than 1/T (the value of q01 at which exactly 1 shift is
expected) are much more likely to fall off the predicted line. This figure differs
from Figure 6 in the main text in that estimated likelihoods are not constrained
to fit the assumptions we used to derive the predicted difference in likelihood.
Specifically, we do not assume irreversibility, we allow partial correlations, and we
do not constrain gain rates to be equal for the independent case.
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D. Graphical Models-Supplementary Methods

To obtain the results in Figure 9 in the main text, we considered two Bayesian1260

Networks involving 3 traits. Body size (B) and species abundance (N) are ob-
served continuous traits, while a third trait, Migratory behavior is a threshold
trait—meaning that it is a discrete trait that has an underlying continuous liability
(Felsenstein, 2011). For the network in Figure 9A, we generated data by simulat-
ing Brownian Motion (root = 0, σ2 = 1) of B on the phylogeny depicted in Figure1265

9C. We then simulated the liability of M as Mliab = B + ε where ε is a random
Normal deviate with mean 0 and standard deviation of 0.5. We then discretized
Mliab into a binary character (M) by assigning liabilities above the median value
of Mliab 1 and below the median value 0. Finally, we simulated values of N as
N = B +−3 ∗M + ε, where ε is again a random Normal deviate with mean 0 and1270

standard deviation of 0.5.

A similar procedure can be peformed if the network is instead what is found
in Figure 9B. Here, we simulate the liability Mliab by Brownian Motion (root =
0, σ2 = 1). Body size (B) is then a function of this liability using the reciprocal
equation, B = Mliab + ε. We then discretize migratory behavior (M) from the1275

liability as before, and simulate values of abundance using the same equation
N = B +−3 ∗M + ε.

We acknowledge that the manner in which the data is generated is somewhat
contrived and parameters were chosen to produce a figure that maps on to the
familiar conceptual depiction of Simpson’s paradox. This was done to aid visual1280

and conceptual interpretability. Under a wider range of parameter combinations,
such consistent differences between PGLS and OLS results will often break down
— particularly due to the lack of robustness of PGLS results to violations of Brow-
nian Motion and its sensitivity to singular events (which will often result from our
imposition of a threshold model, see Case Study I in the main text). Thus, our1285

primary goal in generating this figure was to choose parameter sets and networks
that visually illustrated the phenomenon of Simpson’s paradox in phylogenetic
comparative datasets in a clearly interpretable way without substantially violating
the assumptions of PGLS regression. While other parameter sets will produce less
visually obvious results, the key points of our argument will remain unchanged.1290
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