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Abstract.—There is a lack of consensus on how next-generation sequence (NGS) data should be considered for phylogenetic
and phylogeographic estimates, with some studies excluding loci with missing data, whereas others include them, even
when sequences are missing from a large number of individuals. Here, we use simulations, focusing specifically on RAD
(Restriction site Associated DNA) sequences, to highlight some of the unforeseen consequence of excluding missing data
from next-generation sequencing. Specifically, we show that in addition to the obvious effects associated with reducing
the amount of data used to make historical inferences, the decisions we make about missing data (such as the minimum
number of individuals with a sequence for a locus to be included in the study) also impact the types of loci sampled for a
study. In particular, as the tolerance for missing data becomes more stringent, the mutational spectrum represented in the
sampled loci becomes truncated such that loci with the highest mutation rates are disproportionately excluded. This effect
is exacerbated further by factors involved in the preparation of the genomic library (i.e., the use of reduced representation
libraries, as well as the coverage) and the taxonomic diversity represented in the library (i.e., the level of divergence among
the individuals). We demonstrate that the intuitive appeals about being conservative by removing loci may be misguided.
[Next-generation sequencing; phylogenetic; phylogeography; RADseq; RADtags; species delimitation.]

Multilocus data sets now dominate phylogenetic
studies, spurred by shifts in the technologies used
to gather sequence data, as well as the general
recognition of the value of multiple independent
loci for phylogenetic study (Pamilo and Nei 1988;
Cummings et al. 1995; Maddison 1997). Next-generation
sequencing technologies—RAD sequencing (RADseq)
(Baird et al. 2008) in particular, allows researchers to
collect unprecedented amounts of multilocus sequence
data irrespective of whether the taxa have any
preexisting genomic resources. However, accompanying
the dramatic increases in the amount of genomic data
that can be readily collected across multiple species
are also much larger amounts of missing data (e.g.,
Rubin et al. 2012; Eaton and Ree 2013; Wang et al.
2013) compared with traditional Sanger sequencing
that amplifies and generates data for each locus and
individual separately. Moreover, the nature of the
missing data also differs.

In studies employing traditional sequencing
approaches, decisions about missing data tend to
focus on whether to delete a taxon from a data matrix
(Roure et al. 2013). For example, in supermatrix studies
with mixed representation of loci across taxa, the
concern is whether species with limited sequence data
across loci (e.g., a few mitochondrial markers) would
lead to a poorly resolved phylogeny (Bininda-Emonds
et al. 2002; Wiens 2003). In contrast, the primary decision
with data generated with next-generation sequencing
methods is whether to delete a locus from a data matrix
because of missing sequences across the individuals in
a study.

With a finite number of sequencing reads spread
across multiple individuals in next-generation

sequencing data sets, there can be large variation
among loci in the amount of missing data (Fig. 1). For
example, a HiSeq Illumina run may generate 140 million
reads. However, when those reads are spread across
individuals and across loci, just by chance, each locus
will have missing sequences in some individuals (even
if individuals have equal concentrations of genomic
DNA; Fig. 1). Because of the technologies involved
in constructing reduced representation libraries,
missing data are also expected to be nonrandomly
distributed across species, with the amount of missing
data proportional to the genetic distance between
taxa. For example, restriction enzymes are often used
to construct the reduced representation libraries in
RADtag protocols (also known as RADseq; Baird et al.
2008). Some taxa might have null alleles generated
by either mutations at enzyme-cutting sites (Fig. 1a)
or newly mutated enzyme-cutting sites that turn
larger fragments into smaller ones that fall out of the
size-selection range. The likelihood of such mutations
will depend on the overall sequence similarity of
species (Rubin et al. 2012). Even for protocols that
generate missing data on a much smaller scale, such
as ultra-conserved elements (UCEs), the probability
that the probes will work differs as a function of
the evolutionary distance among species (Faircloth
et al. 2012; Lemmon et al. 2012). Missing data from
next-generation sequencing could also be generated by
the data processing step. For example, with the high
error rate in next-generation sequencing compared with
traditional Sanger sequencing, one common practice is
to require a minimal number of reads (i.e., a coverage
threshold) to ensure the genotype is properly detected
at given locus. Loci in individuals below the coverage
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358 SYSTEMATIC BIOLOGY VOL. 65

FIGURE 1. Schematic of the different factors that can contribute
to loci with missing data in RADseq. Missing data (shown in gray)
may result from: a) mutations at enzyme-cutting sites (triangles), b)
the shot-gun nature of next-generation sequencing, where the amount
of missing data will depend on the number of reads per locus per
individual, and c) data processing of sequences, such as when there
are fewer reads per locus than the required minimal depth (see locus
2 of sample 5) and when there are too many variable sites per locus
(shown as triangles). The final data matrix available for phylogenetic
analysis d) will consist of loci that are missing across individuals to
varying degrees (the focus of this article). Although not investigated
here, there may also be differences in the number of loci across
individuals associated with unequal concentrations of DNA in the
genomic preparations of individuals, which could affect phylogenetic
analyses.

threshold will not be represented in the processed data
set (Fig. 1b). Furthermore, assembling reads from next-
generation sequencing, either de novo or by mapping
to a reference genome, relies on sequence similarity
(Catchen et al. 2011). Identity cutoffs are often applied
to avoid nonorthologous assemblies (Rubin et al. 2012),
so alleles with greater divergence among individuals
(or relative to the reference genome) may be excluded
(Fig. 1c), especially for more distantly related taxa.

These issues raise the question of how we should treat
missing data when we use next-generation sequences
for phylogenetic and phylogeographic studies. Not only
has the issue of nonrandomly distributed missing data
received limited study (see Rubin et al. 2012; Hovmöller
et al. 2013), but current studies also differ in how
they handle such missing data. Some studies remove
loci when sequences for a locus are missing from
some sampled individuals (e.g., McCormack et al. 2012;
Zellmer et al. 2012). Such a decision is often viewed
as a more conservative approach to making historical
inferences, whereas others opt to include loci with
missing data in their analyses, even when the data
are missing in a large proportion of the individuals
in the study (Emerson et al. 2010; Wagner et al. 2013).
Despite the lack of a consensus on whether to include
or exclude loci with large amounts of missing data,
it is clear that such decisions affect the results. For
example, both the phylogenetic resolution and support
for species relationships of cichlids from the Lake
Victoria radiation differ considerably when loci with
missing data were included (vs. excluded), as did
the delimitation of the individual species themselves
(Wagner et al. 2013). What is not clear is whether the
observed effects of including loci with missing data
in such empirical studies also correspond to more
accurate inferences. Simulation studies can address such
questions because they provide the requisite framework
to assess accuracy—a known history can be compared
with estimated histories when excluding loci with a
given amount of missing data.

Here, we present the results of a simulation study
to specifically address the question of whether we
are being conservative (i.e., guarding against errors in
our estimates) when we opt for more complete data
sets and throw out loci with missing data. We focus
on how different tolerances for missing data from
RADseqs impact: (i) the properties of genomic data
sets used in phylogenetic studies, (ii) the detection of
monophyletic taxa, and (iii) the accuracy of phylogenetic
inferences. We chose to focus on phylogenomic data sets
generated using RADseqs given their broad applicability
across taxa and their popularity in recent empirical
applications (e.g., Eaton and Ree 2013; Wagner et al.
2013), and also because of their general accessibility
to independent researchers (as with UCEs; e.g., Smith
et al. 2014), in contrast with the limited accessibility
of certain approaches like anchored hybrid enrichment
for generating phylogenomic data (e.g., Lemmon et al.
2012). We also focus on RADseq because the technology
generates data sets with large numbers of loci and large
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amount of missing data compared with other next-
generation sequencing technologies. Our results reveal
some unforeseen consequences of excluding missing
data, which can be further exacerbated by decisions
researchers make during library preparation and data
processing of the genomic data.

METHODS

Simulation of Missing Data
Because this study focuses on RADseq, we conducted

simulations that approximate the type of data that
researchers would obtain from sequencing RADtag
libraries on the Illumina platform. Complete data sets
without missing data were first simulated, and a series
of manipulations of these data sets were then conducted
that capture some of the factors that can lead to missing
data (Fig. 1). Different thresholds for missing data were
applied to study the effects of excluding loci with
missing data on downstream phylogenetic analyses. We
note that not all potential factors that might contribute
to missing data are represented in the simulations (see
Results and Discussion).

The complete data sets were simulated by: (i)
generating 20 different species trees of 8 taxa under a
Yule birth-and-death model with MESQUITE (Maddison
and Maddison 2011) and (ii) scaling the total depth of
each species trees to 2N and 20N generations (to enable
consideration of how decisions about excluding missing
data may impact phylogenetic inferences differently
depending upon the amount of sequence divergence
among taxa). For each species tree at each depth, (iii)
10,000 coalescent genealogies that sample 12 haplotypes
per species were simulated using the program ms
(Hudson 2002), and on each genealogy, (iv) sequences
of 98 basepairs (bp) were simulated using the program
SEQGEN (Rambaut and Grassly 1997) with a mutation rate
randomly drawn from a lognormal distribution with
a mean � of 0.005 (�=4N�, where N is the effective
population size and � is the mutation rate) and a log
standard deviation of 1.3 (i.e., �=0.002 and 0.012 for the
25th and 75th percentile, respectively).

Based on the simulated complete data sets, data
matrices with missing data were constructed to account
for three factors that would act in concert to generate
missing data (sequentially represented in panels of
Fig. 1). The first is the possibility of a mutation at
the enzyme-cutting site (Fig. 1a). By considering the
first 8 bp of the sequence as the enzyme-cutting site,
an individual was deleted for a particular locus if its
sequence contained a mutation in this 8 bp (Fig. 1a). The
following simulations only used the rest of the 90 bp (i.e.,
the invariant enzyme-recognition sites were cleaved).

To generate data sets with missing data that reflects
the shotgun nature of next-generation sequencing, we
randomly draw the number of reads for each individual
sequence at each locus from a Poisson distribution,
which results in different individuals without a sequence

across loci (Fig. 1b). We set the mean of the Poisson
distribution to 5 (i.e., 5 × coverage for haploid states),
which is commonly considered as an efficient coverage
for NGS studies (Nielsen et al. 2011). Individuals with
no reads for a given locus were deleted for that locus
from the data matrix. Using the same procedure, we also
simulated and analyzed data sets with the extremely
low coverage of 1 × (which was suggested for some
population genetics studies; Buerkle and Gompert 2013).
With these two coverage settings, we can explore the
extent of reduction in data matrix size when researchers
make different choices about coverage during the
preparation of the library.

Finally, we generated data sets to examine how the
processing of data prior to phylogenetic analyses might
contribute to missing data (hereafter referred to as
post-sequencing missing data; Fig. 1c). Current NGS
studies differ considerably in how data are processed
in terms of the bioinformatics tools used and their
parameter settings. To approximate the amount and
the property of missing data generated in the data
processing stage, we focused on two steps (Fig. 1c).
One is the minimum read depth across an allele for
inclusion in a processed data set, that is, the setting
used in a software package as the minimal depth of
coverage to create a “stack” or “allele” (Catchen et al.
2011; Hird et al. 2011). The other step involves the
processing of sequence data to identify orthologous loci
across individuals. In general, this setting refers to the
maximum sequence divergence allowed across reads
and is commonly applied to avoid creating artificial loci
with nonorthologous reads (e.g., reads from different
members of a gene family; Langmead et al. 2009; Catchen
et al. 2011). The post-sequencing data sets were generated
by dropping individual sequences from the data matrix
that had less than two reads and that exceeded the
maximum divergence of either 2 or 5 nt differences,
for the 2N and 20N divergence scenarios, respectively
(for each locus, one sequence from the data matrix
was randomly selected as the centroid for measuring
divergence; Fig. 1c).

Analyses
The effect of excluding loci with missing data on (i) the

size of the data matrix (i.e., the number of loci) and (ii) the
properties of the data set (i.e., impact on the mutational
spectrum represented in the data set) was examined.
For each set of simulated data sets that correspond to
the three sources of missing data described above, we
calculated the size of data matrix when using different
tolerance levels for missing data (i.e., the minimum
number of individuals with sequences for a locus to
be included), examined the distributions of mutation
rates of intact loci after accounting for different sources
of missing data, and compared them with the initial
distribution used for simulation. Because both the length
of genealogy and its mutation rate determine the amount
of genetic variation in a RAD locus, we also examined
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the changes in the distribution of genealogy depth
among loci.

The effect of excluding loci with missing data on
the monophyly of taxa and phylogenetic accuracy was
examined using different subsets of the 10,000 simulated
loci to separate out the effects attributable to (i) data
set size and (ii) biases in the mutational spectrum that
result when loci are selected based on their level of
missing data. For these analyses, we rank ordered the
loci according to the level of missing data (the number
of individuals without a sequence for a given locus). For
each species tree, we first applied different tolerances
for missing data to generate two data sets that differ in
size and their respective mutational spectrums. A small
data set with nearly complete sampling was created (i.e.,
loci are present in ≥99% of individuals). Although the
exact number of such loci differed across species trees,
on average there were 398 and 253 loci with nearly
complete sampling for species trees at 2N and 20N depth,
respectively. A large data set with more missing data,
specifically, loci that are present in more than half of
the individuals, was generated and contained on average
7814 and 5618 loci across the species trees with 2N and
20N divergence, respectively. To identify the specific
effect of biases in the mutational spectrum across loci
(as opposed to differences in data set size), we generated
additional data sets that contained an equal number of
loci as the data set with nearly complete sampling (the
data sets with 398 to 263 loci referred to above), but the
loci for these data sets were randomly sampled from
subsets of the original 10,000 loci with higher tolerances
for missing data. Specifically, three such data sets were
generated for each species tree where the different
tolerances used to define subsets of loci with different
mutational spectrums were the inclusion of loci if they
were present in ≥12.5%, ≥25%, and ≥50% individuals.
To provide insight into the effects of including a lot of
loci, but loci with very large amounts of missing data on
phylogenetic inferences, as opposed to smaller numbers
of loci with less missing data, we also generated two
additional large data sets of loci missing in up to 75%
and 99% of the individuals (i.e., present in at least one
individual). In total, there were seven data sets generated
for each species tree, and measurements of monophyly
of taxa and phylogenetic accuracy were averaged across
species trees at the same depth for each type of data set
(see below).

The average number of monophyletic species in
the simulated species trees was calculated from
phylogenetic estimates of the concatenated loci for each
data set generated from RAxML v7.2.6 with the rapid
bootstrap option (Stamatakis et al. 2008). Best-scoring
ML gene trees were estimated with the GTRGAMMA
substitution model, and bootstrap support based on
100 replicates was used to identify well-supported
monophyletic taxa (i.e., nodes with bootstrap values
of 70% or greater; Taylor and Piel 2004). Due to
computational limits, 2500 loci were randomly sampled
from the large data sets for phylogenetic estimation
(i.e., those with an average of 7814 and 5618 loci

across the species trees with 2N and 20N divergence,
respectively).

We also did a separate analysis for evaluating
phylogenetic accuracy, given that the RAxML 96-taxon
(12 haplotypes per species) trees are not directly
comparable to an 8-taxon species tree when species
are not monophyletic. For these analyses, species trees
were estimated using the shallowest divergence method
(Takahata 1989). The distance between species or clades
was calculated as the average minimal number of
nucleotide differences (among all sampled individuals)
across multiple loci (see also Maddison and Knowles
2006) and a clustering algorithm was used to iteratively
group species and/or clades with minimal distances.
The accuracy of phylogenetic estimates was evaluated by
calculating the Robinson–Foulds distance (Robinson and
Foulds 1981) between the estimated species trees and the
actual species trees used to simulate the sequences. With
this approach, species/clades with identical sequence
divergences, which were frequently encountered in
the smaller data sets for species trees at the shallow
divergence of 2N, were considered as a polytomy (i.e., a
lack of phylogenetic information; see also Yu et al. 2011)
instead of randomly clustering one of the tie pairs (as in
Maddison and Knowles 2006). As such the method used
here to estimate the species tree has properties that make
it appealing for this particular application. However, we
recognize that other methods might be used to estimate
species trees (or to estimate gene trees for discovering
monophyletic species, as described in the previous
paragraph). We note that all the findings on factors that
impact the data matrix for downstream phylogenetic
inference would apply broadly, irrespective of which
particular methods are used. Similarly, although the
absolute magnitude of effects of missing data might
shift with different methods of analysis (Knowles et al.
2012), the relative impact on the accuracy of phylogenetic
inference associated with the treatment of missing data
will still provide insight.

RESULTS AND DISCUSSION

Data Matrix Size
The ultimate size of the data matrix from RADseq

depends on multiple factors, including the amount
of sequence divergence among the individuals/taxa
included in the study, the coverage and post-sequencing
processing decisions about the reads, and the tolerance
for missing data set by the researcher (Fig. 2). Although
it is obvious that different tolerances for missing data
will directly impact the data matrix size (Fig. 2), the rate
of change in the size of the matrix depends on both the
coverage and the divergence history. Specifically, as the
tolerance for missing data increases, the size of the data
matrix increases exponentially for recently diverged taxa
(Fig. 2a) compared with a more linear rate of increase for
older species divergences (Fig. 2b). Moreover, decisions
in the preparation of the library, such as the number of
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FIGURE 2. As the tolerance for missing data increases, the size of the data matrix increases (presented as the percentage of the original 10,000
independent loci retained). The data set size changes exponentially for recently diverged taxa a) compared with a more linear rate of increase for
older species divergences b), as shown for a total tree depth of 2N and 20N, respectively. The thick gray line in each plot represents the amount
of missing data due to mutations at enzyme-recognition sites. The thin black line (which mostly overlaps with the thick gray line) shows the
amount of additional missing data generated during sequencing when targeted coverage is 5 × , and the thick black line represents the amount
of missing data after data processing. In each plot, the changes in the size of data sets with reduced coverage (i.e., 1 × coverage) is shown by
the thin dashed line, and the thick dashed line shows the corresponding amount of missing data after data processing for a data set with 1 ×
coverage.

samples to multiplex into an Illumina lane, will affect the
coverage, and hence impact the data matrix size.

For any given tolerance level of missing data, a library
sequenced at lower coverage will result in a smaller data
matrix. These results should not be taken as evidence
that the “right” coverage should be high versus low; such
decisions are going to depend upon the intended use of
the data. For example, phylogenetic inference might be
rather robust to the sequencing errors that go undetected
with low coverage, whereas the negative impact of such
errors on applications that rely on accurate detection of
rare polymorphism, such as disease mapping, may be
significant. It is also noteworthy that overly stringent
criteria (i.e., almost complete representation of locus
across individuals) will result in significant reductions in
the data matrix size because of mutations at the enzyme-
cutting site, irrespective of the coverage used to generate
the library (Fig. 2, gray lines).

These effects highlight the downstream consequences
of decisions made during the construction of the library
and processing of the data. However, because of the
dependency of data matrix size on the divergence history
of the taxa themselves (see also Rubin et al. 2012), there
is no rule-of-thumb to follow when using RADseqs for
phylogenetic analysis. For instance, if researchers apply
the same tolerance for missing data, the data matrix will
be smaller if the divergence history is older. Likewise, in
real data sets, larger amounts of data might be eliminated
than demonstrated here (Fig. 2) because of other factors
that might contribute to missing data and impact the
property of the data sets. For example, we did not model
the probability of newly mutated enzyme-cutting sites
that produce shorter fragments outside the size selection
range, or the probability of restriction methylation that
could generate different sets of fragments even without a
mutation (Reyna-Lopez et al. 1997). Although our study
does not provide information on all the possible sources

of missing data, the factors we investigated are general
properties associated with library construction and post-
processing of sequences, and in that sense, are broadly
relevant to any RADseq study. Moreover, the protocol for
this study could be used by any researcher to investigate
how other specific factors contribute to missing data.

Distribution of Mutation Rates Represented across
Vetted Loci

When we include loci based on whether they are
present in some or most of the individuals in the data
matrix, we introduce a bias in the type of loci included
in the phylogenetic analysis. Specifically, we shift
the distribution of mutation rates represented across
loci (Fig. 3). For example, by analyzing the different
simulated data sets we can show that mutations in the
enzyme-cutting site used to construct the library and
the post-sequence processing contribute individually to
a shift in the distribution of mutation rates across loci.
The cumulative effect of these factors is a clear loss of
loci with high mutation rates (Fig. 3). Consequently,
when we are conservative, we may be removing some
of the loci that might be especially informative for
phylogenetic analyses (see below). Theoretically, both
genealogical depth and mutation rate determine the
level of genetic variation among sampled individuals at
a given locus (see Huang et al. 2010). For the divergence
scenarios considered here, the shift in the spectrum
of mutation rates that occurs when loci with missing
data are excluded appears to be the primary factor
that impacts downstream phylogenetic inference,
given the apparent lack of a significant shift in the
distribution of genealogy depth (online Appendix 1;
available from http://www.sysbio.oxfordjournals.org/,
http://dx.doi.org/10.5061/dryad.jf361). However,
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FIGURE 3. Density distribution of mutation rates, �, across loci (shown as a function of �, where �=4N�) for shallower and older species
divergence histories (i.e., 2N and 20N, respectively). The gray shaded area represents the original density distribution of mutation rates in the
simulated data set, whereas the lines represent the shift in the mutational spectrum that results from different sources of missing data. In each
plot, the cumulative effect of missing data arising from both mutations at the enzyme-cutting site and post-sequence processing is shown by
the thick black line, whereas the shift in the distribution due to mutations at the enzyme-cutting cite alone is shown as the thin gray line. The
magnitude of the shift in the spectrum of mutation rates is greater for deeper divergences (b) relative to recent divergences (a).

under other scenarios, such as extremely shallow
divergence where large ancestral population sizes may
contribute fairly deep trees, or when divergence with
gene flow results in relatively shallow depths, the impact
of excluding missing data on the observed distribution
of genetic variation may be greater because of the
additional truncation of the distribution of genealogies.

Downstream Phylogenetic Consequences of Excluding Loci
with Missing Data

When we exclude loci, the impact on phylogenetic
analyses may be significant because of the reduced
amount of information available relative to the larger
data sets when loci with missing data are included
(Fulton and Strobeck 2006; Wiens 2006; Rubin et al.
2012; Hovmöller et al. 2013). As with loci obtained
from traditional sequencing approaches, the effect of
the size of the data matrix is readily apparent on
the number of monophyletic taxa estimated from a
maximum-likelihood gene tree from the RADseqs (Fig. 4;
see also Wagner et al. 2013). However, an additional
impact of vetting loci based on their level of completeness
is also apparent. Even for data sets of the same size, the
shift in the distribution of mutation rates represented
across loci results in fewer monophyletic taxa being
detected (Fig. 4). Evaluation of the accuracy of species
relationships (Fig. 5) also illustrates the impact of
the bias in mutation rates represented among loci
when excluding loci with missing data. Specifically,
for the same number of loci, selecting loci with the
least missing data results in a lower accuracy of
estimated phylogenetic relationships. Note that this
unforeseen consequence of vetting loci, however, is
not as nearly as large as the effect of size of the
data matrix on phylogenetic accuracy. Interestingly,
for the diversification scenarios examined here, we
did not detect a substantial difference in the accuracy

of species relationships estimated for the large data
sets (i.e., thousands of loci) even when including loci
with extremely large amounts of missing data (Fig. 5).
This finding, together with previous observations that
sampling multiple individuals increases the accuracy of
phylogenetic inference, especially for recent divergent
histories (e.g., Maddison and Knowles 2006; Heled and
Drummond 2010), suggests the potential benefits of put
more individuals into a illumine lane, even if it comes
at the cost of lower coverage per locus per individual.
Yet, this speculation still needs to be thoroughly
investigated with more comprehensive simulations
where the number of sampled individuals covaries
with the sequencing coverage, and the proportional
increase in sequencing errors with lower coverage is
considered, before we can begin to understand the
minimum coverage required for accurate phylogenetic
inference.

CONCLUSIONS

Our results show how decisions made by researchers
during the construction of libraries and processing of
data, as well as the divergence history itself, impact not
only the size of the data matrix, but also properties of the
data set with respect to the distribution of mutation rates
represented among loci. We also demonstrate that when
researchers vet loci with a low tolerance for missing data,
information is lost from both a reduced data set size and
a biased representation of the mutation spectrum among
screened loci. Hence, contrary to our intuition, these
“conservatively” selected loci could be no better than
a set of randomly selected loci (Figs. 4 and 5) in terms
of phylogenetic accuracy. Our analysis complements
observations from recent empirical studies. For example,
Wagner et al. (2013) found that larger data matrices,
despite their large amount of missing data, result in
better resolution in delimiting Lake Victoria cichlid
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FIGURE 4. The number of monophyletic taxa on ML gene tree estimated for each of the data sets with different sizes and different tolerances
of missing data (i.e., different mutational spectrums). For a given number of loci, fewer monophyletic taxa were detected in data sets that
only include loci with almost no missing data. The number of monophyletic taxa also depends on the data set size and the timing of species
divergence, with fewer monophyletic taxa identified for the shallow divergent history of 2N (a) compared with the deeper divergent history 20N
(b). The number of monophyletic taxa and the number of loci are averages across 20 species trees used in the simulations. The black proportion
of the bars represents the average number of well-supported monophyletic taxa (bootstrap values ≥70%); the asterisks mark the data sets with
significant increases in the number of monophyletic taxa compared with the conservative approach of tolerating only 1% missing data (based
on a Wilcoxon-paired sign rank test).

FIGURE 5. The topological difference (i.e., RF distances) between the estimated and true species tree for each of the data sets with different sizes
and different tolerances of missing data. The RF distances and the number of loci are averages across the 20 simulated species trees with (a) 2N
and (b) 20N divergence; the asterisks mark data sets with significant decreases of the RF distances (i.e., more accurate phylogenetic inferences)
compared with the conservative approach of tolerating only 1% missing data (based on a Wilcoxon-paired sign rank test).

species, and Rubin et al. (2012) discovered that the higher
proportion of missing data in larger data matrices does
not adversely affect phylogenetic accuracy using in silico
digestion of Drosophila genomes. Our work provides
insights into how both the size of the matrix and the data
matrix properties may contribute to such observations.

Given that the data matrix reflects complex
interactions between aspects of library construction
and processing with the divergence history itself (see
Figs. 2 and 3), our results also suggest that general
rules-of-thumb are unlikely. For example, the answer to
questions like what level of coverage would maximize
the size and quality of a data matrix for phylogenetic
analysis would depend on the specifics of each study.
Nevertheless, an understanding of the impact of specific

factors associated with the generation and processing
of next-generation sequencing data, as shown here, can
be achieved on a study-by-study case basis through
simulation.

How to deal with missing data has been a
long-standing question for phylogenetic studies (e.g.,
Wilkinson 1995). This is the first investigation to
understand what specific effects missing data have
when inferring phylogeny from the short sequence
reads, where most of the phylogenetic information is
contained in single-nucleotide polymorphisms (SNPs).
This work complements recent investigation into the
utility of RADseqs for phylogenetic inference more
generally (Rubin et al. 2012), and the more intensive
studies on RADseqs and missing data on SNP calling
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and population genetic parameter estimation (Arnold
et al. 2013; Buerkle and Gompert 2013). However, much
more study will be needed before we will be able
to understand how much missing data is too much
for accurate phylogenetic inference. Given how long
this issue has been debated with respect to traditional
Sanger sequences (Roure et al. 2013), a simulation
approach, such as the one described here, is the first step
toward an understanding of the impact of missing data
on phylogenetic inferences based on next-generation
sequencing.

SUPPLEMENTARY MATERIAL

Supplementary material, including scripts and
simulated data sets, can be found in the Dryad data
repository at http://dx.doi.org/10.5061/dryad.jf361.
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