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Abstract.—Model checking is a critical part of Bayesian data analysis, yet it remains largely unused in systematic studies.
Phylogeny estimation has recently moved into an era of increasingly complex models that simultaneously account for
multiple evolutionary processes, the statistical fit of these models to the data has rarely been tested. Here we develop a
posterior predictive simulation-based model check for a commonly used multispecies coalescent model, implemented in
*BEAST, and apply it to 25 published data sets. We show that poor model fit is detectable in the majority of data sets; that
this poor fit can mislead phylogenetic estimation; and that in some cases it stems from processes of inherent interest to
systematists. We suggest that as systematists scale up to phylogenomic data sets, which will be subject to a heterogeneous
array of evolutionary processes, critically evaluating the fit of models to data is an analytical step that can no longer be
ignored. [Gene duplication and extinction; gene tree; hybridization; model fit; multispecies coalescent; next-generation
sequencing; posterior predictive simulation; species delimitation; species tree.]

The introduction of multispecies coalescent models to
phylogenetic inference marked a fundamental advance
in systematic biology (Yang 2002; Rannala and Yang
2003; Degnan and Rosenberg 2009; Edwards 2009).
These models treat populations, rather than alleles
sampled from a single individual, as the focal units in
phylogenetic trees. The multispecies coalescent model
connects traditional phylogenetic inference, which seeks
primarily to infer patterns of divergence between
species, and population genetic inference, which
has typically focused on intraspecific evolutionary
processes. The development of these models was
motivated by the common empirical observation that
genealogies estimated from different genes are often
discordant (e.g., Rokas et al. (2003); Jennings and
Edwards (2005)) and the discovery that, if ignored, this
discordance can bias parameters of direct interest to
systematists, such as the relationships and divergence
times among species (Degnan and Rosenberg 2006;
Kubatko and Degnan 2007; McCormack et al. 2011).

In order to reconcile discordance among gene trees
and uncover true species relationships, the first gene
tree/species tree models assumed that discordance is
solely the result of stochastic coalescence of gene lineages
within a species phylogeny (Rannala and Yang 2003;
Edwards et al. 2007; Kubatko et al. 2009; Heled and
Drummond 2010). These approaches estimate topology,
divergence times, and effective population sizes (except
Kubatko et al. (2009)) of the species tree using a model
where the probability of a gene tree being discordant
with a species tree increases with the ratio of effective
population size along a branch to the length of the
branch (Takahata 1989; Rosenberg 2002). When their
assumptions are met, these models are consistent (Liu
and Edwards 2009) across a wide range of divergence

histories (Hird et al. 2010; Leache and Rannala 2011).
However, the number of independently segregating loci
needed to accurately infer the species tree increases with
the above ratio (Hird et al. 2010; Huang et al. 2010).

Coalescent stochasticity, however, is not the only
source of gene tree discordance (Maddison 1997).
Selection, hybridization, horizontal gene transfer,
gene duplication/extinction, recombination, and
phylogenetic estimation error can also result in
discordance. Maddison (1997) described the product
of these disparate genealogical and methodological
processes as a “cloud” of gene trees. Given that these
sources of discordance are common (Zhang 2003; Mallet
2005; Charlesworth 2006), we can expect that they
will be ubiquitous in new phylogenomic data sets.
Unfortunately, beyond a few studies on recombination
(Lanier and Knowles 2012), migration (Eckert and
Carstens 2008), and horizontal gene transfer (Chung
and Ane 2011), we have little idea of the extent to
which these factors, unaccounted for, may bias the
inference of topology and divergence times in species
tree inference.

Currently, no method can account for all of
these factors. For example, some methods estimate
species trees while accounting for gene duplication
and extinction (Rasmussen and Kellis 2012), some
incorporate gene flow (Gerard et al. 2011; Pickrell and
Pritchard 2012), others conduct species delimitation
(O’Meara 2010; Yang and Rannala 2010), and at least
one models discordance without reference to a specific
biological process (Ané et al. 2007). Other than a recent
model restricted to a three-taxon case (Choi and Hey
2011), no model accounts for more than two factors,
and none accounts for natural selection. Discordance
can also be caused by methodological problems, such as
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errors in species delimitation and mis-specified models
of DNA sequence evolution. Although the potential for
methodological error is well-established, very little work
has been to quantitatively estimate its prevalence in
empirical studies.

Given that all models must make some simplifying
assumptions, and available models make assumptions
that are known to be frequently violated, it is imperative
to assess the statistical fit of the models to the data.
Evidence of poor model fit should encourage researchers
to treat phylogenetic estimates with caution and to
explore important biological processes that they might
not have previously considered. Model checking in this
sense seeks to evaluate the absolute fit of models to the
data, in order to determine whether any of the models
under consideration sufficiently describe the data. This
approach complements more widely applied methods
of model selection that choose among a set of available
models (Goldman 1993).

Posterior predictive simulation (PPS) is a commonly
used method for model checking in a Bayesian
framework (Gelman et al. 2009). Although the use
of PPS has been advocated for phylogenetic inference
(Huelsenbeck et al. 2001; Bollback 2002; Nielsen 2002;
Nielsen and Bollback 2005; Brown and ElDabaje 2009),
it has yet to be widely adopted. PPS has been used to
show that some common macroevolutionary models are
a poor fit to the true process of diversification (Rabosky
et al. 2012); that two common population genetic models
perform poorly in describing the history of the duck,
Anas strepsera (Peters et al. 2012) and recommended for
use in evaluating models of DNA sequence evolution
in the inference of gene trees (Bollback 2002). However,
aside from a recent paper suggesting its use in
identifying instances of introgressive hybridization (Joly
2012) it has not been used to check the fit of multispecies
coalescent models.

Here we develop a model-checking method in the PPS
framework to test the fit of a commonly used Bayesian
multispecies coalescent model implemented in *BEAST
(Drummond and Rambaut 2007; Heled and Drummond
2010) to 25 published data sets. We then hypothesize
about the sources of identified model mis-specification
and discuss the consequences for inferences based on the
multispecies coalescent.

MATERIALS AND METHODS

The Multispecies Coalescent Model in *BEAST
*BEAST implements a Bayesian hierarchical model

to estimate a species tree with divergence times
and effective population sizes from multilocus DNA
sequence data. The model hierarchy has three levels
(Fig. 1). The bottom level connects the data, a series
of DNA sequence alignments for n independently
segregating loci (D=d1, d2, … , dn) to their respective
gene trees (G=g1, g2, … , gn) through the standard
phylogenetic likelihood (Felsenstein 1981):

L(gi)=P(di|gi).

Gene tree likelihoods are conditioned on a chosen
model of sequence evolution. Gene tree branch
lengths are measured in substitutions per site, the
product of mutation rate and time. The second level
connects the gene trees (G) to ultrametric coalescent
genealogies (U =u1, u2, … , un), whose branch lengths
are proportional to time, through a molecular clock
model:

L(ui)=P(gi|ui).
Several molecular clock models, including relaxed

clocks (Drummond et al. 2006) and a random local clock
(Drummond and Suchard 2010) are available in *BEAST,
each of which makes differing assumptions about the
distribution of mutation rates among branches in the
gene trees (*BEAST incorporates the molecular clock
model into the gene tree likelihood, but we depict it
separately here for clarity). The third level connects
the ultrametric coalescent genealogies (U) with the
species tree, including divergence times and effective
population sizes (S), through the multispecies coalescent
model:

L(S)=P(ui|Si).
The likelihood of the multispecies coalescent (P(ui|S))

is calculated as the product, across all branches in
the species tree, of the probabilities of the coalescent
processes within each branch (Rannala and Yang 2003).
The most general form of the model in *BEAST allows
the population size on each branch to change linearly,
with the constraint that the sum of the population sizes
of daughter branches must always equal the population

b) a)

FIGURE 1. A schematic of the *BEAST analysis model and how our PPS model checks relate to it. We check the fit of two parts of the model
independently: (a) the fit of the coalescent genealogies to the species tree and (b) the fit of DNA sequence data to the gene trees. Information from
the data filters up through the model (black lines), whereas prior information filters down (dashed lines). Simulated data (gray) are influenced
by the empirical data, the model structure, and the prior.
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size of their parent (piecewise linear). The marginal
posterior probability of the species tree given the data
for the full model is then

P(S|D)∝
n∏

i=1

∫

gi

∫

ui

P(di|gi)P(gi|ui)P(ui|S)P(S)duidgi.

P(S) is the joint prior probability distribution on the
species tree topology, branch lengths, and effective
population sizes. *BEAST estimates the posterior
distribution of the parameters of the model using a
Markov chain Monte Carlo (MCMC) algorithm.

PPS Approach to Checking the Fit of the
Multispecies Coalescent

To conduct PPS, one first obtains the joint posterior
distribution of parameters for a model, draws sets of
parameters from that joint distribution and uses them
to simulate data (Fig. 1). In this case, each set of
sampled parameters is a single step from an MCMC
analysis in *BEAST. Each set of parameters is used
to simulate a single data set. The simulated data sets
generated from all MCMC steps retained for analysis
form a posterior predictive distribution representing
reasonable outcomes of the model conditioned on the
observed data. One can then compare the empirical data
with the posterior predictive distribution using well-
chosen test statistics. The ways in which the empirical
data do not match the predictive distribution can identify
failures of a model to capture important biological
processes.

Because *BEAST implements a hierarchical model,
and we are most interested in whether the multispecies
coalescent component of the model is an appropriate
fit to the data, our approach to using PPS isolates
and checks two levels of the model independently: the
multispecies coalescent and the phylogenetic likelihood.
We do not try to isolate and check the fit of molecular
clock models here.

We check the multispecies coalescent by comparing
coalescent genealogies simulated from the posterior
distribution of species trees with those estimated in
the empirical analysis. We used two test quantities for
the comparison, both of which directly assess the fit of
the simulated and estimated coalescent genealogies to
the estimated species tree: the multispecies coalescent
likelihood (i.e., the probability of a coalescent genealogy
given the species tree (P(ui|S)), and the number of deep
coalescences (Maddison 1997; Rannala and Yang 2003).
A deep coalescence is here defined as more than one
gene lineage exiting a population going backward in
time, resulting in coalescence in an ancestral population.
The number of deep coalescences for a given gene tree
in a given species tree is the number of gene lineages
in excess of one exiting a population going backward
in time, summed across all populations (contemporary
and ancestral) in the species tree. We predicted that for
the coalescent likelihood, poor fit would be reflected by

individual loci with extremely low probabilities, a low
product of probabilities across loci, or an unexpectedly
high coefficient of variation of probabilities across loci.
For the number of deep coalescences, we expected
that poor fit would manifest itself either in individual
loci with unexpectedly high or low numbers of deep
coalescences, excessively high or low sums of deep
coalescences across loci, or a high coefficient of variation
across loci. Each of these values measures the degree
of discrepancy between gene trees and species trees
or across gene trees. In order to generate posterior
predictive distributions with expectations of 0, we use
test quantities (sensu Gelman et al. (2009)) that are
conditioned on particular parameter values sampled
from the posterior distribution. To do so, we simulate
one set of coalescent genealogies for each draw from
the posterior (sampled from the MCMC), calculate test
statistics for the coalescent genealogies from that draw
as well as the coalescent genealogies simulated from
the species tree in that draw, and take their difference.
A 95% highest posterior predictive density interval that
does not contain 0 indicates poor fit of the model to
the data with respect to that test quantity. For clarity,
we refer to all ultrametric gene genealogies estimated or
simulated under the model as coalescent genealogies,
even if there is evidence that non-coalescent processes
influenced them.

Although our primary interest in this study is
assessing the fit of the multispecies coalescent, there
are two reasons to simultaneously assess the fit of the
phylogenetic likelihood. First, poor fit of the multispecies
coalescent could be due to poorly fitting models of
sequence evolution that result in inaccurate estimates
of coalescent genealogies. Second, we speculated that
the prior distribution on gene trees induced by the
coalescent model may put very low probability on
gene tree topologies generated by processes other
than stochastic coalescence. For such gene trees, this
informative prior could result in estimates that fit the
multispecies coalescent model well but strongly disagree
with the underlying sequence data.

We check the fit of the phylogenetic likelihood by
comparing DNA sequence data simulated from the
estimated gene trees (G) with the empirical data. We
use four test quantities: (i) the number of variable sites,
the (ii) multinomial and (iii) phylogenetic likelihoods,
and (iv) the Goldman–Cox (GC) statistic, which is the
difference between the multinomial and phylogenetic
likelihoods. We expect the number of variable sites to be
roughly related to total tree length. We predicted that
in some cases of poor fit, the empirical phylogenetic
likelihood would be lower than expected based on
the posterior predictive distribution of phylogenetic
likelihoods since posterior predictive sequence data sets
would not conflict with their corresponding gene trees.
The multinomial likelihood is the product, across all sites
in an alignment, of the frequency of their respective site
patterns, and has been frequently used as a test statistic
in phylogenetic PPS (Bollback 2002; Brown and ElDabaje
2009). The GC statistic has been used in assessing the fit
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of models of DNA sequence evolution in a likelihood
framework (Goldman 1993; Ripplinger and Sullivan
2010). The multinomial and phylogenetic likelihoods
are expected to converge with very large amounts of
data, so when the difference between them is larger
than expected, it is a sign that some part (sequence
model or tree) of the evolutionary model is a poor fit
to the data. It is also worth noting that the phylogenetic
and multinomial likelihoods and the GC statistic are all
strongly correlated with the number of variable sites
in an alignment. Therefore, inaccurate estimates of tree
length, even absent other reasons for poor fit, can lead to
deviation in these statistics.

Empirical Data
We obtained 25 data sets from Genbank or directly

from the authors (Table 1). With a few exceptions, we
avoided publications that dealt with hybridization
directly, or those that excluded known introgressed
loci. We also avoided publications whose express goal
was species delimitation, because errors in species
assignment are a clear violation of the multispecies
coalescent. Each data set was analysed using the
models of sequence evolution provided in the original
manuscript with the exception of models requiring both
a proportion of invariable sites and gamma-distributed
rates across sites (RAS), because we occasionally
observed problems with convergence when using them
together. In those cases we used only gamma-distributed
RAS. We retained any intra-locus partitioning schemes,
and for the phylogenetic likelihood model checks
treated each locus subset individually. We ran each data
set twice for at least as long as in the original publication.
To conduct PPS we excised the first 10% of MCMC steps
as burn-in, combined both runs, and thinned them to
∼2000 MCMC samples. All analyses were conducted
using custom scripts in the statistical language R
(R Development Core Team 2011), available on NMR’s
website (https://sites.google.com/site/noahmreid/
last accessed May 9, 2013) in tandem with ms (Hudson
2002), Seq-Gen (Rambaut and Grass 1997), ape (Paradis
et al. 2004), and phangorn (Schliep 2011). We selected
four data sets that fit the model poorly in some way and
subjected them to further analysis. For two (Tamias and
Cheirogaleidae) we removed single loci that showed
poor fit, re-analysed the rest of the data and compared
the model estimates. For the other two (Ursus and
Sistrurus) we eliminated the multispecies coalescent
level of the model hierarchy, fit completely independent
trees and clock models, and compared the gene tree
estimates.

RESULTS

Data Sets and Analyses
We analysed 25 data sets from papers spanning 12

orders of Eukaryotes (Table 1). The average number
of operational taxonomic units (OTUs) was 13.7, the

average number of alleles per data set was 67.2, and the
average number of independently segregating loci was
9.6. Seventeen data sets utilized organellar as well as
nuclear DNA. For *BEAST analyses, nearly all data sets
had ESS values of over 200 for all parameters. Markov
chains for a few data sets mixed poorly, but if parameter
estimates from 2 independent runs were very similar
after 200 million generations, we included them anyway.
Results of our *BEAST analyses were consistent with
published results for each data set.

Overview of Results
At the level of the coalescent genealogies, we found

evidence of poor model fit in 4 data sets (16%)
considering all test quantities. Seven total loci across data
sets deviated from expectations (2.9%; Table 2). Two of
those data sets showed poor fit at only one locus (Certhia
and Cheirogaleidae). Three of these data sets also had
poor fit at the DNA sequence level (Aliatypus, Certhia,
and Tamias), although not always for the same loci (50%).
We were unable to identify systematic trends in the
observed deviations. Tamias had one locus with an excess
of deep coalescences and low probability (mitochondrial
Cyt b) and one with a deficit of deep coalescences (ACR;
Fig. 2). Aliatypus had three nuclear loci with deficits of
deep coalescences and low probabilities (partial results
in Fig. 3). Certhia and Cheirogaleidae each had one locus
with an excess of deep coalescences, but no deviation in
probability of coalescent genealogy.

At the level of the sequence data we found evidence of
poor model fit in 20 data sets (80%) with 45 partitions
and 44 loci (16.9% and 18.3%, respectively) deviating
from expectations (Table 3). Deviations were apparent
using all test statistics, but the GC statistic was the most
frequent indicator (33/45 partitions). Again, there were
no obvious systematic trends in the deviations, except
that the empirical GC statistics tended to be smaller
than expected (60% were smaller), although this was not
significant under a binomial test.

While we have low sample size, mitochondrial genes
(mtDNA) do not appear to be overrepresented among
the loci that poorly fit in the coalescent genealogy tests.
Two of the seven poorly fitting loci were mitochondrial
(binomial test: successes = 2, trials = 7, probability =
17/240, P=0.08). However, 11 of 44 of the loci that
poorly fit in the sequence data tests were mitochondrial,
a significant excess (binomial test: successes = 11, trials
= 44, probability = 17/240), P=0.0002).

Case Studies—Removal of Genes Poorly Fitting
Coalescent Assumptions

The Tamias and Cheirogaleidae data sets each
contained one locus that fit poorly at the coalescent
genealogy level. In order to determine whether data
that do not fit the model affect the outcome of the
analysis we elected to remove these loci (the mtDNA
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TABLE 2. Summary of the tests of the fit of the coalescent genealogies to the multispecies coalescent model

Coalescent likelihood across Deep coalescences Individual
loci – P(ui|S) across loci loci

Sum Coefficient Sum Coefficient Coalescent Deep
likelihood coalescences Poorly

fitting
loci (%)Data set Loci + − + − + − + − + − + − Total

Aliatypus 5 1 – – 1 1 – – 1 3 – 3 – 3 60.0
Certhia 20 – – – – – – – 1 – – – 1 1 5.0
Cheirogaleidae 12 – – – – – – – – – – – 1 1 8.3
Tamias 5 – – – – 1 – 1 – 1 – 1 1 2 40.0

Total 240 1 0 0 1 2 0 1 2 4 0 4 3 7 2.9
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P(ui|S)

Sum Coefficient of
Variation

Deep Coalescences
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Sum Coefficient of
Variation
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ALL
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CYT b

a) b)

d)c)

FIGURE 2. PPS model check results for Tamias. a) Key for the figure. Distributions of test statistics are shown, where the dashed line is the
expectation (0), and gray bars indicate the boundaries of the 95% and 99% highest posterior predictive density intervals. (b, c) Give results for the
test of the fit of coalescent genealogies; boxes with bold black lines indicate poor fit. A single gray bar indicates a one-tailed test. b) Coalescent
genealogy tests for all loci; c) Coalescent genealogy tests for the two loci that fit poorly, ACR and Cyt b; d) Sequence data tests for the same
two loci.

locus Cyt b from Tamias and the nuclear locus ABCA1
from Cheirogaleidae) from their respective data sets
and re-analyse them. Both loci had an excess of deep
coalescences, and the Tamias Cyt b locus also showed
low probability given the species tree.

After removal of Cyt b from Tamias, we did not observe
substantial change in the posterior means of the relative
mutation rate parameters. The species tree root height
was 11% lower when Cyt b was included and the gene
trees were on average 3% higher, although the 95%
HPDs overlapped substantially (the result was the same
if the gene trees were scaled to the same mutation

rate or unscaled). In contrast, the scale parameter of a
gamma-distributed prior on effective population sizes
across branches in the species tree (the species.popMean
hyperparameter), was 3.6 times larger in the data set
including Cyt b and the 95% HPDs for the two analyses
did not overlap. Most notably, the tree topologies
between the two runs changed drastically, returning
incompatible, highly supported nodes (Supplementary
Fig. S1). There was no evidence of poor fit using our PPS
analysis after Cyt b was removed.

After removal of ABCA1 from the Cheirogaleidae
data set, we similarly observed few changes in the
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FIGURE 3. PPS model check results for Aliatypus. See Figure 2 for interpretation. a) Coalescent genealogy tests for all loci. (b, c) Show two of
three loci for which the data were a poor fit; b) coalescent genealogy tests; c) sequence data tests, with the COI locus partitioned by codon.

relative mutation rate parameters or root heights. The
single exception was the Adora locus, whose mean
relative mutation rate parameter was 1.5 times higher
and whose unscaled root height was 1.4 times larger
when ABCA1 was excluded. These changes apparently
made the Adora tree a poorer fit to the sequence data, as
all test statistics became more extreme, but none crossed
the P=0.05 threshold. For all other loci, the mean root
heights were 5% higher, the species tree root height was
10% higher and the popMean parameter was 10% larger
when ABCA1 was included. The species tree relative
branch lengths, topology, and posterior probabilities
were unchanged when ABCA1 was removed.

Case Studies—Re-analysis with Independent-Gene-Trees
The Sistrurus and Ursus data sets did not show poor

fit at the genealogy level, but each had several loci (3/20
and 4/14, respectively) that fit poorly at the sequence
level. All poorly fitting loci had greater GC statistics than
predicted. One locus from each data set fit poorly using
all test quantities. In order to test the hypothesis that poor

fit at these loci stems from the multispecies coalescent-
induced prior on the gene trees, we re-analysed the data
with no species tree prior constraining their topologies
and unlinked all parameters. As a result, all signs of poor
fit vanished.

When comparing gene genealogy estimates between
the analyses, results differed between the two data sets.
There was no obvious reason why the independent-
gene-trees model should be a better fit to two of the
three Sistrurus loci, as they were primarily unresolved
in both analyses. The third gene, Fibrinogen beta chain
(FGB), however, had one strongly supported conflict
among analyses: in the independent-gene-trees model,
the placement of alleles from the outgroup taxon,
Agkistrodon contortrix was polyphyletic with respect to
the ingroup, instead of as sister to the other outgroup
taxon, A. piscivorous. Trees sampled in the MCMC for
Sistrurus loci that fit the phylogenetic likelihood poorly
tended to have very similar likelihoods whether the
species tree was enforced or not.

Poorly fitting Ursus loci, in contrast, often had
obvious topological differences across analyses. The
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TABLE 3. Summary of the tests of the fit of the sequence data to the phylogenetic Likelihood

Variable Phylogenetic Multinomial GC
sites likelihood likelihood statistic % poorly

fitting
partitions

% poorly
fitting

lociData set Loci Partitions + − + − + − + − Total

Aliatypus 5 8 2 – – 3 – 2 3 – 3 37.5 40.0
Brachycephalus 4 4 – – – – – – – 1 1 25.0 25.0
Buarremon 7 7 – 1 – – – – – – 1 14.3 14.3
Bufo 5 5 – 1 – – 1 – 1 – 2 40.0 40.0
Certhia 20 20 – 1 1 – 1 – – 1 1 5.0 5.0
Cettiidae 4 4 – – – – – – – – 0 0.0 0.0
Cheirogaleidae 12 12 – – – – – – – – 0 0.0 0.0
Ctenosaura 4 4 – 1 – – 1 – – – 1 25.0 25.0
Etheostoma 4 4 – – – – – – 1 – 1 25.0 25.0
Herpystichum 10 10 1 – – 1 – 1 1 – 1 10.0 10.0
Lepus 14 14 – – – – – – – – 0 0.0 0.0
Liolaemus 20 20 6 1 1 7 1 7 8 – 10 50.0 50.0
Locustellidae 5 5 – – – 1 – – 1 – 1 20.0 20.0
Malurus 17 17 – – – – 1 – – – 1 5.9 5.9
Manacus 5 5 – – – – – – – – 0 0.0 0.0
Myotis 7 7 1 – – – – 1 – 1 1 14.3 14.3
Phocidae 16 40 – 2 2 – 2 – 2 1 4 10.0 25.0
Phyllomedusa 3 3 – – – – – – – – 0 0.0 0.0
Psittacidae 8 8 – 1 1 – 2 – – 1 2 25.0 25.0
Sceloporus 8 8 – – 1 – 1 – 1 – 2 25.0 25.0
Sistrurus 19 19 – 1 1 – 1 – – 2 3 15.8 15.8
Sitta 17 17 – 1 1 – 1 – – 2 2 11.8 11.8
Tamias 5 5 – 1 1 – 1 – – – 1 20.0 20.0
Thomomys 7 7 – – – – – 1 2 – 3 42.9 42.9
Ursus 14 14 – 1 1 – – 1 – 4 4 28.6 28.6

Total 240 267 10 12 10 12 13 13 20 13 45 16.9 18.3

locus nr11080, for example, yielded a paraphyletic Ursus
arctos, with the bears from Admiralty, Baranof, and
Chichagof (ABC) islands being more closely related
to Ursus maritimus. Under the species tree model, the
ABC haplotypes were the sister group to U. maritimus,
but under the independent-gene-trees model, they
were scattered within the U. maritimus clade. Also in
contrast to Sistrurus, each of the 4 poorly fitting loci
showed average improvements of ∼30 log-likelihood
units for trees sampled during the MCMC under the
independent-gene-trees model, whereas the other 10 loci
improved ∼5 log-likelihood units.

DISCUSSION

Gelman et al. (2009) argue that model checking is an
essential part of Bayesian data analysis, on par with the
initial formulation of models and fitting those models to
data. Here we have developed the first general model-
checking method for a commonly used multispecies
coalescent phylogenetic inference model, and our results
show that poor fit between model and data is detectable
in a majority of sampled data sets. At the level of
coalescent genealogies, it is relatively straightforward
to suggest biological explanations for poor fit between
processes generating gene tree topologies and the
specified coalescent model. In contrast, poor fit at the
level of the DNA sequence data could plausibly be
explained by a variety of forms of model misfit. While

the test quantities used here do not uniquely identify
the biological processes that violate the multispecies
coalescent model, the identification of loci that fit
poorly in combination with relevant biological and
geographical context can suggest directions for future
analyses. Below, we discuss empirical examples of
poor fit, their observed consequences, and possible
approaches to take when poor fit is detected.

Empirical Examples of Poor Fit to the Multispecies
Coalescent Model

Recent hybridization is a likely explanation for poor
model fit when there is an excess of deep coalescences
and closely related haplotypes are shared among species.
The Tamias data provide a good example. Previous
studies have detailed extensive mtDNA introgression
between non-sister species in the genus (Good et al.
2008; Reid et al. 2010; Reid et al. 2012). In these analyses,
the mtDNA is identified as having an excess of deep
coalescences and low coalescent genealogy probability
(Fig. 2). When the Tamias genealogies themselves are
examined, statistically supported discordance among
gene trees and species non-monophyly in the species
tree are evident. When the mtDNA is removed and the
data re-analysed, all signs of poor fit, including at one
nuclear locus that showed a deficit of deep coalescences,
disappear. Additionally, the species tree topologies
change drastically. Two species appearing as sister taxa
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in the tree including mtDNA are distantly related in the
nuclear-only tree (Supplementary Fig. S1). We expect
recent hybridization to impact analyses because without
modeling it, species divergences must always post-date
the divergence of shared gene lineages.

Unmodeled population structure can also presumably
cause poor model fit, as exemplified by the Aliatypus
data. There is no supported discordance among loci in
relationships between populations in this group, and
yet poor fit is evident in 3 out of 5 loci, and also
in the summaries across loci (Fig. 3). These statistics
indicate a deficit of deep coalescences (1 locus also
has low probability). We hypothesize that high genetic
diversity within OTUs, as a result of unmodeled
population structure, leads to overestimation of effective
population size, and thus an overprediction of the
amount of stochastic lineage sorting. This is consistent
with what is known about Aliatypus biology: these are
terrestrial spiders that live in subterranean burrows
with limited dispersal ability (Coyle and Icenogle 1994).
Geographically close populations often have highly
divergent mtDNA haplotypes, and those haplotypes
tend to have highly restricted distributions (Satler et al.
2011).

The remaining two data sets that showed poor
fit at the coalescent genealogy level, Cheirogaleidae
and Certhia, each had one locus with an excess of
deep coalescences, but did not have low probability.
These issues are harder to resolve. An examination
of the Cheirogaleidae locus, ABCA1, yielded a fairly
well resolved genealogy that contained some species
that were non-monophyletic, each with unique, highly
divergent haplotypes not shared with other species. This
could be a result of ancient hybridization, balancing
selection, or gene duplication and extinction. Gene
duplication and extinction seems unlikely, as the
issue might have been expected to manifest itself in
patterns of heterozygosity and been resolved through
cloning. Distinguishing balancing selection from ancient
hybridization would require analyses of Dn/Ds ratios
and more detailed studies of population structure.

It is also possible for systematic error in coalescent
genealogy estimation to cause poor model fit at this
level, even if the model is correct. For this to be the
case, mis-specified models of sequence evolution and/or
molecular clock models would have to prefer incorrect
trees strongly enough to overcome the prior probability
distribution on coalescent genealogies induced by the
multispecies coalescent. This may be most likely in
cases when mis-specification is very serious (e.g.,
sequences with secondary structure where sites are non-
independent) or when there is a lot of information
and high complexity (e.g., mtDNA). Both Aliatypus and
Tamias mtDNA are found to fit the model poorly at both
levels, but we believe the genealogical patterns causing
poor fit in those systems are clear enough to adequately
explain observed patterns of misfit.

At the level of DNA sequence data, sources of
poor fit are harder to distinguish. There are two
main possibilities. First, models of sequence evolution

and molecular clock models could be mis-specified.
Second, coalescent genealogies could be a poor fit to
the multispecies coalescent, but the prior distribution
on coalescent genealogies induced by the model might
overwhelm the signal in the data. This could strongly
favor topologies and branch lengths that fit the
multispecies coalescent, but are a poor representation of
the sequences. We speculate that both effects are evident
in our analyses. The overrepresentation of mtDNA loci
among those that poorly fit at this level may result from
the first effect. In particular, mtDNA contains a large
number of variable sites and thus more phylogenetic
signal than most autosomal loci. It seems less likely
that prior probability distributions on gene genealogies
could push poorly fitting loci away from their preferred
topologies. In support of this idea, of two data sets
included here that partitioned their mtDNA, both had
some partitions that fit the model and some that did not
(e.g., Fig. 3). If the tree was the problem, we might expect
all partitions of the same locus to fit poorly.

In contrast, we expect much of the poor fit we observe
at nuclear loci to be a result of the second factor. Our
analyses of Sistrurus and Ursus support this idea. We
would not expect to see improved fit when the species
tree portion of the model was eliminated if the models
of sequence evolution and mutation rate variation were
causing the problem. Additionally, in Ursus we see
changes in topology and posterior probabilities that are
consistent with strong prior sensitivity. Interestingly, the
pattern observed at the locus mentioned above, nr11080,
is likely to be a previously unacknowledged signal of
hybridization at nuclear loci in this data set. Ursus
maritimus mtDNA is thought to be a result of a fixed
introgression from bears related to those from the ABC
islands, so it is unsurprising to discover that the ABC
bears may harbor DNA that has moved in the other
direction (Edwards et al. 2011; Hailer et al. 2012; Miller
et al. 2012).

It is important to note that there are potentially
other non-examined sources of discordance, including
inaccurate taxonomic knowledge of species limits. If
individuals are inaccurately assigned to OTUs in a
species tree analysis, one would expect that PPS would
indicate that the species tree is a poor fit to the data,
although it would likely be difficult to identify the cause
of this poor fit.

Consequences of Poor Fit
Our analyses suggest that poor fit to the multispecies

coalescent model can mislead inference in empirical
studies. In the case of recent hybridization, the
consequences may be severe, as species divergences are
forced to post-date gene divergences. For example, when
the mitochondrial DNA were removed from Tamias, the
species tree topology changed drastically. The topologies
from both analyses conflicted at strongly supported
nodes and two recently hybridizing species, Tamias
amoenus and Tamias ruficaudus went from sister taxa,
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to being only distantly related (Supplementary Fig.
S1). Unexpectedly, the nuclear DNA did not fit either
model poorly, which may be a sign that the data are
insufficiently informative or that our approach does not
have high power.

When topological conflict among coalescent
genealogies is the result of ancient hybridization,
balancing selection, or gene duplication and extinction,
the consequences may be less severe. It seems possible
that such conflicts may be resolvable by invoking
deep coalescence. For example, when we removed the
ABCA1 locus from the Cheirogaleidae, the changes to
the topology, branch lengths, and posterior support
were minimal. This flexibility of the multispecies
coalescent may also make such processes difficult to
detect using our framework. If detecting such processes
were our primary goal, rather than identifying instances
of poor model fit, development of new test quantities
might be necessary.

If the coalescent genealogies themselves are of interest,
our results suggest that the prior probability distribution
induced by the multispecies coalescent can be quite
informative. This is of concern because some recent
studies have used species tree-based models to improve
estimates of gene genealogies (Åkerborg et al. 2009;
Wu et al. 2012). This may be useful when the prior
distribution is appropriate, but if important processes
are unmodeled, our results suggest analyses may be
misled.

Strategies for Dealing with Poor Fit
When poor fit is detected, there are two main strategies

that can be used to ameliorate it. First, remove data
that violate the multispecies coalescent model. Many
of the processes causing poor fit may be heterogeneous
across the genome. Not every gene family is expected
to be the focus of bouts of duplication and extinction, or
intense selection, and not every region of the genome will
introgress with equal ease. If a relatively small number
of loci appear to fit poorly, it is easy to remove them
and re-analyse the data. Second, the biological processes
that generate variation in gene tree topologies should
be explicitly modeled, as should relevant dynamics of
molecular evolution. Increasingly complex multispecies
coalescent models are being implemented, but there are
tradeoffs. Some examine gene duplication and extinction
(Rasmussen and Kellis 2012) or migration (Pickrell
and Pritchard 2012) but cannot estimate divergence
times.

We believe our results suggest that a concatenation
approach to analysing multilocus data sets with
extensive inter-locus heterogeneity in topology may
be even more perilous than simulation studies have
shown (Kubatko and Degnan 2007; Edwards 2009).
Those studies assume that the only source of discordance
among loci is coalescent stochasticity. Here we show that
other factors contribute to heterogeneity among gene
trees, exacerbating the issue.

CONCLUSIONS

The very act of data analysis requires researchers
to make assumptions about the evolutionary processes
that have shaped the data. We demonstrate that not all
empirical data are consistent with the assumptions of
the multispecies coalescent model. As the number and
breadth of phylogenetic methods increases, it is far better
to assess the fit between models and the data to which
they are being applied than it is to assume that a certain
method is appropriate to a given data set. Phylogenetics
is no longer a data-poor enterprise, and we can afford
to be choosy with the data that are analysed. PPS is
an effective method for identifying data that violate
important assumptions of analytical models.
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