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Abstract

Classic null models for speciation and extinction give rise to phylogenies

that differ in distribution from empirical phylogenies. In particular, empiri-

cal phylogenies are less balanced and have branching times closer to the root

compared to phylogenies predicted by common null models. This difference

might be due to null models of the speciation and extinction process being

too simplistic, or due to the empirical datasets not being representative of

random phylogenies. A third possibility arises because phylogenetic recon-

struction methods often infer gene trees rather than species trees, producing

an incongruity between models that predict species tree patterns and empiri-

cal analyses that consider gene trees. We investigate the extent to which the

difference between gene trees and species trees under a combined birth–death

and multispecies coalescent model can explain the difference in empirical trees

and birth–death species trees. We simulate gene trees embedded in simulated

species trees and investigate their difference with respect to tree balance and

branching times. We observe that the gene trees are less balanced and typi-

cally have branching times closer to the root than the species trees. Empirical

trees from TreeBase are also less balanced than our simulated species trees,

and model gene trees can explain an imbalance increase of up to 8% com-

pared to species trees. However, we see a much larger imbalance increase in

empirical trees, about 100%, meaning that additional features must also be

causing imbalance in empirical trees. This simulation study highlights the ne-

cessity of revisiting the assumptions made in phylogenetic analyses, as these

assumptions, such as equating the gene tree with the species tree, might lead

to a biased conclusion.

Which macroevolutionary processes give rise to empirical phylogenies? This ques-

tion has puzzled biologists for almost as long as empirical phylogenies have been

inferred. It can be argued that neither the discrete tree shapes nor the numeri-

cal branching times of empirical trees are explained well by current null models of
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macroevolution (Blum and François, 2006; Etienne and Rosindell, 2012).

For the discrete tree shape, approaches to testing macroevolutionary null models

typically rely on tree-balance statistics, measuring the extent to which sizes of sister

clades differ at internal nodes of phylogenies (Sackin, 1972; Colless, 1982; Mooers and

Heard, 1997; Aldous, 2001; Felsenstein, 2004). In balanced trees, sister clades have

similar numbers of taxa, whereas in unbalanced trees, their numbers of taxa differ

substantially. Tests of a macroevolutionary model compare theoretical or simulation-

based predictions of the model about tree balance to observations from empirical

trees (Heard, 1996; Agapow and Purvis, 2002; Heard and Mooers, 2002; Blum and

François, 2006; Bortolussi et al., 2006). Tests of predictions about branching times

proceed similarly, examining representations of the number of lineages through time

(Harvey et al., 1994) and evaluating the extent to which lineages accumulate nearer

the present rather than early in the phylogeny.

Perhaps the simplest model describing the shapes of phylogenies is the constant-

rate birth–death model, in which speciations are represented by birth events and

extinctions by death events (Kendall, 1948, 1949; Nee et al., 1994). Under this model,

each species at each point in time has the same rate λ for speciation and the same

rate µ for extinction. When examining theoretical phylogenies under the model and

empirical phylogenies constructed primarily from molecular data, studies typically

observe that empirical phylogenies are much less balanced than is predicted by the

constant-rate birth–death model (Aldous and Pemantle, 1996; Blum and François,

2006; Hagen et al., 2015). As all the so-called species-speciation-exchangeable models

(Stadler, 2013)—including the Yule pure-birth model, diversity-dependent models,

and environment-dependent models—predict the same tree-shape distribution as the

constant-rate birth–death process, a large class of models predicts phylogenies to be

more balanced than those that have been reported. Furthermore, branching times

in empirical phylogenies are generally closer to the root of the tree than is predicted

by the constant-rate birth–death model (Etienne and Rosindell, 2012).
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The mismatch of a simple null model such as the constant-rate birth–death pro-

cess with empirical phylogenies built from molecular sequences has been described

with two classes of explanations: the null model might be a poor description of the

macroevolutionary process (Aldous and Pemantle, 1996; Heard, 1996; Heard and

Mooers, 2002), or alternatively, it might be a reasonable model that fails because

it is applied to non-representative sets of empirical phylogenies that possess various

forms of bias, including selection bias and taxon sampling bias (Mooers and Heard,

1997; Heath et al., 2008). We investigate yet a third possibility: the model and data

are both reasonable, but the species evolution process that the models describe is not

the same as the gene lineage evolution process that the molecular sequences represent.

When testing macroevolutionary hypotheses on empirical phylogenies, are the

models and data commensurable? In typical models for macroevolution, species trees

are considered, representing the branching order of species. Frequently, however,

empirical species trees are inferred from one or a small number of concatenated

sequence alignments, and the inferred gene tree—the tree of genetic lineages at a

particular region of the genome—is implicitly treated as an estimated species tree.

Gene trees can be highly discordant with their underlying species tree (Degnan, 2013,

Table 2), even when gene trees are estimated with high accuracy. Therefore it is not

clear that models of species evolution correctly describe properties of accurately

inferred gene trees.

Here, using a hierarchical model, we investigate the difference in tree balance

and branching times between gene trees and species trees. In our model, the process

of species evolution—speciation and extinction—employs the simple birth–death

process. Gene trees for a particular species tree, however, are described by the mul-

tispecies coalescent model of gene lineage evolution conditional on the species tree

(Rannala and Yang, 2003; Degnan and Rosenberg, 2009). The hierarchical model

enables us to investigate the extent to which tree balance differs in gene trees—the

data source of empirical phylogenies—and species trees, the source of predictions
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about the data. Under our model, we find that gene trees typically have greater

imbalance compared to species trees. We investigate if the imbalance in empirical

phylogenies—which exceeds that of birth–death species trees—can be explained with

the hierarchical model under the assumption that empirical phylogenies are, in fact,

gene trees.

The multispecies coalescent null model assumes that gene lineages merge within

the species tree branches according to a coalescent process (Degnan and Rosenberg,

2009). Typical analyses of gene trees under the multispecies coalescent treat a fixed

species tree as a parameter (Degnan and Salter, 2005; Degnan et al., 2012; Wu, 2012);

here, we permit the species tree to vary as in empirical macroevolutionary studies,

examining the distribution of gene trees given a birth–death distribution of species

trees. We perform a simulation study over a range of parameter combinations.

The discrete tree shape, the discrete temporal ordering of the branching events,

and the continuous branching times uniquely describe a phylogenetic tree. We study

the gene-tree and species-tree distributions under the nested model, focusing on tree

shape and branching times. As these quantities are high-dimensional objects, we

calculate summary statistics.

For tree shape, we examine the well-known Colless statistic (Colless, 1982); we

also consider the Sackin statistic (Sackin, 1972) and a statistic recording the num-

ber of cherries in a tree (McKenzie and Steel, 2000). These statistics measure the

imbalance of tree shapes, the Colless and Sackin statistics increasing with increasing

imbalance, and the cherry statistic decreasing with increasing imbalance.

For the branching times, we consider the γ statistic (Pybus and Harvey, 2000),

measuring the temporal locations of branching events. Increasing γ corresponds to

moving branching times in a tree closer to the tips. A constant-rate pure-birth tree

has an expected γ of 0, and γ increases with an increasing amount of extinction.

Under the hierarchical model, our simulation poses three questions. (1) How

different are the shapes of gene trees compared to species trees? (2) How different
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are the branching times of gene trees and species trees? (3) How different are the

model gene trees from empirical gene trees? We first formally define the species

tree and gene tree models. We then discuss our simulation results and compare the

simulated gene trees to a database of empirical phylogenies.

The Hierarchical Model

The Birth–Death Model of Speciation and Extinction

The constant-rate birth–death model of speciation and extinction begins at time

T in the past with a single species. Each species has a birth rate λ > 0 and a death

rate µ with 0 ≤ µ ≤ λ. The values of λ and µ apply to all species. At the present,

extant species lineages are independently sampled, each with probability ρ, 0 < ρ ≤

1, for inclusion in the final species phylogeny. We assume an improper uniform-

(0,∞) distribution on T and condition on the final phylogeny having n sampled

tips. In other words, the resulting simulated tree set is analogous to the following

procedure: we draw a time T from the uniform-(0,∞) distribution; we simulate

for time T starting with a single species; we keep the tree if we obtain n extant

sampled present-day species; we repeat the procedure until we obtain the required

number of trees. However, we employ mathematical theory to make the simulations

efficient (Aldous and Popovic, 2005; Gernhard, 2008a). Our simulations vary three

parameters: the speciation rate λ, “turnover” µ/λ, and sampling probability ρ.

To facilitate interpretations, we note that different parameter values for λ, µ/λ,

and ρ can give rise to exactly the same species tree distribution. When decreasing

the sampling probability ρ while increasing the speciation rate λ and turnover µ/λ,

we can obtain the same distribution of phylogenetic trees (Stadler, 2009).

We recall the parameter transformations that generate identical phylogenetic

tree distributions. Consider arbitrary λ > 0 and µ/λ with 0 ≤ µ/λ ≤ 1, and let
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ρ = 1. Choose a sampling probability ρ′, with 0 < ρ′ < 1. The increased values of λ′

and µ′/λ′ producing the same distribution as (λ, µ/λ, 1) are (Stadler, 2009)

λ′ =
λ

ρ′
(1)

µ′

λ′
= 1 + ρ′

(

µ

λ
− 1

)

. (2)

Note that by eq. 1, λ′ increases with decreasing ρ′. For turnover, noting that ρ′ ≤ 1,

it follows that 1 + ρ′(µ
λ
− 1) ≥

µ
λ
, so that µ′

λ′
≥

µ
λ
. Furthermore, eq. 2 reveals that

turnover µ′/λ′ increases with decreasing ρ′. In the case of µ/λ = 1, decreasing ρ′

increases the speciation rate λ′, while turnover µ′/λ′ is fixed at 1.

Beginning from choices for (λ′, µ′/λ′, ρ′) with λ′ > 0, 0 ≤ µ′/λ′ ≤ 1, and ρ′ <

1, the parameter values (λ′, µ′/λ′, ρ′) of a partially sampled speciation–extinction

process give rise to the same phylogenetic tree distribution as a process with complete

sampling (λ, µ/λ, 1) if and only if µ′/λ′
−1

ρ′
+1 = µ

λ
≥ 0; if µ′/λ′

−1

ρ′
+1 < 0, then no birth-

death process producing the identical phylogenetic tree distribution with complete

sampling exists (the second requirement on µ
λ
, namely µ

λ
≤ 1, is satisfied for all

permissible λ′, µ′, ρ′, following from µ′

λ′
≤ 1 ).

The Coalescent Model for Gene Lineages

Within a species lineage, we assume that gene lineages coalesce backward in time

according to Kingman’s coalescent (Kingman, 1982a,b). Under Kingman’s coales-

cent, the waiting time in calendar units for two gene lineages to find their common

ancestor is exponentially distributed with rate 1/(Ng), where N is the haploid ef-

fective size of the population along the species lineage and g is the length of a

generation in calendar units (Hudson, 1990; Drummond et al., 2005). Following the

assumptions of the multispecies coalescent, gene lineages that do not coalesce along

a species tree branch persist into ancestral species branches, where they also have

the opportunity to coalesce with other gene lineages entering the ancestral species
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from other descendant species (Degnan and Rosenberg, 2009).

Simulation Design

We simulated species phylogenies under a constant-rate birth–death model with

speciation rate λ, extinction rate µ, and sampling probability ρ for each extant

species. We simulated 100,000 species trees on n tips for each parameter combination

(λ, µ, ρ), for n = 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100.

Next, conditional on species trees, we simulated one gene tree per species tree,

assuming a sample of one gene lineage per extant species. We assumed a constant

effective population size N and a constant generation time g for a species, with

Ng = 1 for each species (meaning N and g may differ across species, but with a

constant product). One coalescent time unit—the expected time to coalescence of

two lineages—is N generations, or Ng calendar time units. A speciation rate of λ

events per coalescent time unit means that in expectation, a species splits into two

species after 1/λ coalescent time units, or equivalently, after Ng/λ calendar time

units (in our setting, Ng/λ = 1/λ).

We compared the distributions of tree shape and branching times of the gene

trees to those of the species trees. We summarized the gene-tree and species-tree

distributions using three summary statistics of tree shape, applied separately to

both gene trees and species trees: the Colless index C, the Sackin index S, and the

number of cherries H. We denote the gene tree statistics by Cg, Sg, and Hg, and

the species tree statistics by Cs, Ss, and Hs. For these statistics, we report ratios,

Cg/Cs, Sg/Ss, and Hg/Hs, where the numerator represents the mean value of the

statistic computed across gene trees and the denominator is the corresponding mean

across species trees. The higher the ratios Cg/Cs and Sg/Ss, and the lower the ratio

Hg/Hs, the more imbalanced the gene trees are in relation to the species trees.

Because these statistics are correlated, we present only the Colless statistic in the

main text and provide the other two statistics in the supplement. The statistic we
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report is equivalent to the average across simulations of 1 + (Cg − Cs)/Cs, where

Cg −Cs is the difference in the Colless statistic for species tree–gene tree pairs. The

value of Cg − Cs depends on both the birth–death parameters and the sample size,

so that dividing by Cs helps to standardize it.

For branching times, we summarized the gene-tree and species-tree distributions

using the branching-time statistic γ. As γ is already normalized for tree size and in

fact has expectation 0 for a range of species tree models, we reported the average of

the difference γg−γs between γ values computed on gene trees and on species trees.

We denote the average difference by γg − γs. The smaller the difference γg − γs,

the closer the branching times of the gene trees are to the root compared to the

corresponding branching times of the species tree.

The simulations and analyses were performed in R unless otherwise indicated.

The code was added to the R package TreeSim v2.2 (Stadler, 2011).

Simulation Results: Tree Shape

Figure 1 and SI Figures 1 and 2 present the ratios Cg/Cs, Sg/Ss, and Hg/Hs,

respectively, of the summary statistics for simulated gene trees and species trees.

We briefly summarize the results for shapes of gene trees compared to species trees.

Both for very small and very large λ, the gene trees and species trees have

approximately the same average tree shape. For intermediate λ, however, in the

biologically plausible range, gene trees evolving on species trees have a different

shape distribution from the species trees themselves. For high turnover µ/λ, the

imbalance was greatest in our simulations for λ = 5, representing an average of five

speciation events in each N -generation unit of coalescent time. For low turnover, the

maximal imbalance was observed for λ = 2, two speciation events per N generations.

The effect was larger for trees with many taxa, producing an increase of ∼8% for

the Colless statistic (Figure 1) and ∼1.8% for Sackin (SI Figure 1), and a ∼1.3%

decrease for the cherry statistic (SI Figure 2). Thus, we might expect to overestimate
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the tree imbalance from empirical data when using gene trees instead of species trees.

We next discuss differences in gene tree and species tree properties in detail, as a

function of speciation rate λ, turnover µ/λ, sampling probability ρ, and the number

of species n used in the simulations. First, we examine the limits of very small and

very large λ, and we then consider the roles of the parameters in the biologically

relevant intermediate cases.

Extreme Values of λ

The extreme cases of λ → 0 and λ → ∞ illustrate the limiting behavior of the

statistics. We use λ = 10−3 to represent λ → 0, and λ = 107 for λ → ∞.

λ → 0.—For small λ, speciation is rare, and therefore, species tree branches are

very long. Consequently, sufficient time exists for each gene lineage coalescence to

occur on the most recent species tree branch for which the coalescence is possible.

Each gene tree then has the same shape as the species tree on which it has evolved.

Thus, the ratios of the mean Colless, Sackin, and cherry statistics for simulated gene

trees and for the underlying simulated species trees all approach 1.

λ → ∞.—For large λ, speciation is frequent, and species tree branches are in-

finitesimally short. Thus, all gene lineage coalescences occur prior to the root of

the species tree. Gene-tree shapes then follow the shapes of gene trees under the

Kingman coalescent. It can be shown that Kingman’s coalescent and constant-rate

birth–death trees produce the same distribution of tree shapes (Aldous and Peman-

tle, 1996). Thus, as in the λ → 0 case, but for a different reason, the ratios of the

mean Colless, Sackin, and cherry statistics for gene trees and species trees equal 1.

Intermediate λ

For intermediate values of λ, we observed in our simulations that gene trees were

less balanced than species trees, as the Colless and Sackin ratios exceeded 1, and

the cherry ratio was less than 1 (Figure 1 and SI Figures 1 and 2). Further, these

ratios move farther from 1 for larger trees.
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statCollessNorm.pdf

Figure 1: Mean Colless statistic of gene trees divided by mean Colless statistic of
species trees (Cg/Cs). Solid lines correspond to complete species sampling ρ = 1,
dashed lines to sampling probability ρ = 0.75, and dot-dashed lines to sampling
probability ρ = 0.5. Plots are obtained based on 100,000 simulated species tree–
gene tree pairs at each choice of parameter values, taking means separately for the
gene trees and the species trees.
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Small λ ≤ 2

Varying λ ≤ 2, fixed turnover µ/λ, and complete sampling ρ = 1.—In our simu-

lations, the difference between gene trees and species trees in tree balance increases

with λ for these parameter values. As species tree branches become shorter with

increasing λ, gene coalescences might not happen on the first allowed branch, and

therefore, they might not follow the same pattern as speciation events.

Fixed λ ≤ 2, varying turnover µ/λ, and complete sampling ρ = 1.—Here, the

difference between gene trees and species tree is larger for small turnover compared

to large turnover. For λ ≤ 2, species tree branches are relatively long, so that most,

though not all, gene coalescences happen on the first branch allowed. Trees with

small µ/λ have younger root ages and therefore shorter branches compared to trees

with large µ/λ (Figures 3 and 4 of Stadler (2008)). Thus, the probability that gene

coalescences do not happen on the first species tree branch—so that they might not

follow the same pattern as speciation events—increases with decreasing turnover.

Fixed λ ≤ 2, fixed turnover µ/λ, and varying sampling probability ρ.—Sparser

sampling, as represented by smaller ρ, decreases the difference in balance between

gene trees and species trees. Recall that a process with sampling probability ρ′,

speciation rate λ′ and extinction rate µ′ is equivalent to a process with complete

sampling ρ = 1 and a smaller speciation rate λ ≤ λ′ and smaller turnover µ/λ ≤

µ′/λ′, provided µ′/λ′
−1

ρ′
+1 ≥ 0. The smaller speciation rate λ produces longer species-

tree branch lengths compared to a process with parameters λ′, µ′, and ρ = 1,

and thus decreases tree-shape differences between gene trees and species trees. On

the other hand, the smaller turnover µ/λ produces shorter trees compared to a

process with parameters λ′, µ′, and ρ = 1, and thus increases the difference of

gene trees and species trees. We observe from the figures that the effect of a smaller

speciation rate—meaning longer branches and thus less difference between gene trees

and species trees—dominates, so that for fixed λ and µ/λ, decreasing the sampling
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fraction increases the agreement between gene-tree and species-tree shape.

Note that for a turnover µ/λ = 1, we have µ/λ = µ′/λ′. Thus, arbitrary λ and

ρ = 1 produces the same tree balance ratio as λ′ = 2λ and ρ′ = 0.5. This property

can be verified in our figures by comparing λ = 0.5 and λ′ = 1, λ = 1 and λ′ = 2,

λ = 10 and λ′ = 20, or λ = 50 and λ′ = 100.

Large λ ≥ 5

Varying λ ≥ 5, fixed turnover µ/λ, and complete sampling ρ = 1.—The differ-

ence in balance between gene trees and species trees decreases with increasing λ,

particularly for the larger λ values (λ ≥ 50). As λ increases, species tree branches

become so short that most coalescences happen prior to the species tree root. Such

coalescences occur according to the Kingman coalescent, inducing the same tree

shapes as the constant-rate birth–death process. Thus, as λ increases, the gene-tree

shape distribution approaches the same distribution as that of species trees.

Fixed λ ≥ 5, varying turnover µ/λ, and complete sampling ρ = 1.—We observe

a larger difference between gene trees and species trees for high turnover compared

to low turnover; for µ/λ = 1, this result begins at λ ≥ 50. Species trees become

very short for large λ, and for fixed λ, low-turnover species trees are shorter than

high-turnover trees. Thus, more gene coalescences happen above the root for low-

turnover trees, so that the approach of the distribution of gene-tree shapes to the

same distribution seen for species trees is faster at low turnover.

Fixed λ ≥ 5, fixed turnover µ/λ < 1, and varying sampling probability ρ.—For

these values, incomplete sampling minimally changes tree balance: the effects of

incomplete sampling, amounting to a process with complete sampling and both a

decrease in λ that produces a greater difference between gene trees and species trees

as well as a decrease in turnover that produces a smaller difference, cancel.

Fixed λ ≥ 5, fixed turnover µ/λ = 1, and varying sampling probability ρ.—In

this case, incomplete sampling can be seen as a process with the same turnover and
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complete sampling, but a decreased speciation rate—meaning that species trees are

longer for smaller ρ. Consequently, decreasing ρ increases the difference between

gene trees and species trees. Note again that statistics in the different plots are the

same for different (λ, ρ) pairs with the same value of λρ.

Simulation Results: Branching Times

Figure 2 presents the difference γg−γs of the γ statistics for simulated gene trees

and species trees. Briefly, gene trees tend to have a smaller γ statistic than species

trees for low to medium values of λ, and a larger γ for large λ & 50, depending on

the turnover. As was observed for tree shapes, all effects increased in magnitude with

the number of taxa n. A value of λ = 50 means that a speciation occurs on average

after Ng/50 calendar time units, which seems very high. Because γ is smaller for

gene trees than for species trees for realistic values of λ, we expect to underestimate

γs from empirical data when using gene trees instead of species trees.

We discuss below differences in branching times between gene trees and species

trees in detail, as a function of λ, µ/λ, and ρ (Figure 2).

Extreme Values of λ

λ → 0.—For small λ and hence long species tree branch lengths compared to the

coalescent rate for gene lineages, each gene tree coalescence occurs immediately prior

to its associated speciation event. Thus, the branching times are nearly identical for

gene trees and species trees, and γg − γs is close to 0.

λ → ∞.—For large λ and hence short branch lengths compared to the coalescent

rate, gene tree coalescences happen prior to the root of the species tree, so that the

gene trees are Kingman-coalescent trees. Kingman-coalescent branch lengths are in

expectation, up to a scaling constant, equal to constant-rate birth–death branch

lengths with λ = µ (Gernhard, 2008b). Thus, γg is in expectation equal to γs for
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constant-rate birth–death trees with λ = µ. The value of γs depends on µ/λ and ρ,

so that for large λ, the behavior of γg − γs depends on the other parameters.

λ → ∞, varying turnover µ/λ, and complete sampling ρ = 1.—For these pa-

rameter values, γs decreases as µ/λ decreases (Pybus and Harvey, 2000). Thus,

γg − γs is increasingly positive with decreasing turnover. As for turnover µ/λ = 1,

the constant-rate birth–death trees equal in expectation Kingman-coalescent trees

up to a scaling constant; thus, we obtain γg − γs ≈ 0 (Figure 2, λ = 107).

λ → ∞, fixed turnover µ/λ < 1, varying sampling probability ρ < 1.—In this

case, species trees can be interpreted to arise from a process with complete sampling

ρ = 1 and decreased turnover. Thus, γs decreases for decreasing sampling probability

ρ, so that γg − γs increases.

λ → ∞, fixed turnover µ/λ = 1, varying sampling probability ρ < 1.—At µ/λ =

1, incomplete sampling does not change relative branch lengths (Stadler (2008),

Figure 3d). Incomplete sampling can be interpreted as a process with decreased

speciation rate λ, turnover µ/λ = 1, and complete sampling ρ = 1. Thus, with

µ/λ = 1, γs is the same for all sampling probabilities.

Intermediate λ

Varying λ, fixed turnover µ/λ, and complete sampling ρ = 1.—As λ increases,

γg − γs first becomes more negative, then switches (λ ≈ 5− 20) and becomes more

positive.

Fixed λ, varying turnover µ/λ, and complete sampling ρ = 1.—We observe a

decrease of γg − γs with increasing turnover, meaning gene trees have branching

events closer to the root compared to species trees for increasing turnover. Note

that µ/λ = 1 and small λ < 5 is an exception; these trees are very long, and gene

trees are almost equal to species trees. Because γg − γs changes from negative to

positive for increasing λ, for small λ, gene trees and species trees are most similar in

γ for small turnover, whereas for large λ, they are most similar for large turnover.
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By contrast, recall that for shape statistics, for increasing turnover, a switch

occurred from decreasing to increasing Cg/Cs values for λ in [2, 20]. Cg/Cs exceeded

1 for all λ. Thus, for small λ, gene trees and species trees were most similar in shape

for large turnover, whereas for large λ, they were most similar for small turnover.

Fixed λ, fixed turnover µ/λ < 1, and varying sampling probability ρ < 1.—The

value γg −γs increases with decreasing sampling, meaning gene trees had branching

events closer to the tips compared to species trees. Recall that a process with de-

creased sampling is equivalent to a complete sampling process and decreased birth

rate and turnover. A decrease in λ leads to an increase in γg − γs for small λ and

a decrease for large λ (see paragraph “Varying λ, fixed turnover µ/λ, and complete

sampling ρ = 1” in this section). A decrease in turnover leads to an increase in γg−γs

(see paragraph “Fixed λ, varying turnover µ/λ, and complete sampling ρ = 1” in

this section). The effect of turnover dominates.

Fixed λ, fixed turnover µ/λ = 1, and varying sampling probability ρ < 1.—

Incomplete sampling increases γg − γs for small λ and decreases γg − γs for large λ.

The reason is that for µ/λ = 1, a process with decreased sampling is equivalent to

a complete sampling process with decreased birth rate and turnover 1. Recall that

a decrease in λ increases γg − γs for small λ and decreases it for large λ.

Simulation Results: Comparing Gene Trees to

Their Species Trees

We have reported average gene tree balance compared to average species tree balance

(Figure 1). This approach does not give an indication of the joint distribution of

shape statistics for gene trees and species trees and therefore of the extent to which

the shape can differ for a gene tree and its underlying species tree. To illustrate this

joint variability, we simulate distributions of 1 + (Cg − Cs)/Cs and Cg/Cs and the

joint distribution of Cg and Cs for λ = 0.1, 2, 20, and 1000, with µ = 0, for n = 100

taxa.
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Figure 2: Mean γ statistic of gene trees minus mean γ statistic of species trees
(γg −γs). Solid lines correspond to complete species sampling ρ = 1, dashed lines to
sampling probability ρ = 0.75, and dot-dashed lines to sampling probability ρ = 0.5.
Plots are obtained based on 100,000 simulated species tree–gene tree pairs at each
choice of parameter values, taking means separately for the gene trees and the species
trees.

17

 at E
T

H
-B

ibliothek on A
pril 24, 2016

http://sysbio.oxfordjournals.org/
D

ow
nloaded from

 

http://sysbio.oxfordjournals.org/


As discussed above, for small λ, gene tree balance closely accords with species tree

balance (Cg/Cs ≈ 1), as species tree branches are very long and the gene tree and

species tree are hence highly correlated (Figure 3). For increasing λ, the correlation

decreases as the species tree branches become shorter, and in the λ → ∞ limit, gene

tree balance is independent of species tree balance. Because of this independence,

the gene trees give rise to the same shape distribution as the species trees, and thus

for large λ, again Cg/Cs ≈ 1—but now, with a low correlation coefficient between

Cg and Cs.

For λ = 0.1, 49.8% of gene trees have a higher Colless statistic than the underly-

ing species trees and 48.1% have a lower value, the remaining cases having identical

values for the gene tree and species tree (Figure 3). For λ = 2, 62% of gene trees have

a higher Colless statistic than the underlying species tree. The percentage drops to

53% for λ = 20 and is again nearly 50% for λ = 1000. For λ = 2 and n = 100,

the average value of Cg/Cs is 1.12, somewhat larger than the corresponding value

Cg/Cs = 1.08 for λ = 2 and n = 100 (Figure 1).

Empirical Trees

To determine whether the difference in tree balance between gene trees and

species trees under the model can explain the excess imbalance in empirical trees,

we reanalyzed a set of empirical phylogenies from TreeBASE (Hagen et al., 2015;

Sanderson et al., 1994). This set of phylogenies included 2759 fully resolved trees,

156 of which possessed calendar-time branch-length information. We hypothesize

that many of these phylogenies are not species trees, but are either gene trees or

trees that result from concatenation of genes.

Recall that the species-tree Colless value for each tree size is independent of

speciation rate, turnover, and sampling probability, as all constant-rate birth–death

processes induce the same distribution on tree shapes (Aldous and Pemantle, 1996).

We calculated the average Colless statistics Cd for all empirical phylogenies for all
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Figure 3: Distributions of 1+ (Cg −Cs)/Cs and Cg/Cs, and the joint distribution of
Cg and Cs. All plots are for the birth process only with no extinction and are based
on 10,000 independent gene tree–species tree pairs simulated in Hybrid-Lambda
(Zhu et al., 2015). Grey lines in the scatterplots represent the line Cg = Cs; above
the line, based on the Colless statistic, the gene tree has less balance than the species
tree.
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sizes up to n = 100, and we report Cd/Cs for each tree. This ratio is on average

about 2 (Figure 4), so that empirical phylogenies have about twice the Colless value

as constant-rate birth–death species trees. Although our simulations detected the

correct direction for the deviation from the baseline value of 1, they also revealed

that the multispecies coalescent with the constant-rate birth–death model can only

explain an increase of the Colless statistic in gene trees compared to species trees

by a factor of 1.08.

For the empirical phylogenies that reported branch lengths scaled in calendar

time, although relatively few data points were available, we further calculated

the γ statistic for completeness, plotting the empirical γ values together with

simulated mean γs values for different µ/λ and ρ (SI Figure 3). We did not plot

γg − γs, as such a calculation would yield an excessive 15 points (5 turnover values,

3 sampling probabilities) for each empirical data point. Because relatively few

trees with branch length information are available for each value of the number

of species, it is not feasible to take an expectation of empirical γ for each tree

size, as we did for the simulations and empirical Colless statistic. The relationship

between the empirical and simulated trends in γg−γs is therefore difficult to discern.

Summary

Using simulations, we have quantified the difference in tree shape and branching

times between gene trees and species trees under a simple hierarchical model, in-

corporating a constant-rate birth–death process for species trees, and a multispecies

coalescent for gene trees conditional on species trees. The results suggest that al-

though in limiting cases of very low and very high speciation rate, gene trees and

species trees have the same distribution of shapes, for a variety of intermediate pa-

rameter values, gene trees are in expectation less balanced than the species trees.

Branching times in gene trees and species trees differ except in the limiting case of
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Figure 4: The Colless statistic for empirical trees from TreeBASE. Each black dot
represents a tree. We normalized each empirical Colless value by dividing by the
expected species-tree Colless value. The expected species-tree Colless value is in-
dependent of speciation rate λ, turnover µ/λ and species sampling ρ. The red line
represents the mean of the normalized Colless statistic for each fixed tree size.

very low speciation rate.

Depending on the question of interest, either of two effect sizes could be reported

for the balance ratio for gene trees and species trees: 1.12 obtained from the average

of the ratios, we which denote Cg/Cs (Figure 3), or 1.08 obtained from Cg/Cs

(Figure 1). If we compare a species tree to its embedded gene tree, the effect size

based on Cg/Cs is appropriate; for our data application, however, we compared a

set of empirical trees to a set of model species trees. Thus, we do not consider pairs,

but averages of two distributions, which calls for the latter effect size, Cg/Cs. If gene

trees and species trees follow the same shape distribution, then the ratio Cg/Cs of
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the expected shape statistics is equal to 1; however, the mean value of the ratio,

Cg/Cs, does not generally equal 1 under the null hypothesis that Cg and Cs have

the same distribution. In particular, for two random variables X and Y , both the

expectations E(X/Y ) and E(Y/X) can exceed 1. Thus, we suggest that Cg/Cs is

less appropriate than Cg/Cs as a measure of the difference in shape distributions.

The observed difference between gene trees and species trees highlights a problem

in tests of species-tree models that make use of empirical phylogenies, demonstrating

that empirical phylogenies obtained by taking gene trees as estimates of species

trees follow a different tree-shape distribution than that predicted for species trees

themselves. It is thus problematic to equate an inferred gene tree to the species tree

when testing for the most appropriate species tree model.

Gene trees are expected to be less balanced compared to the underlying species

tree, with branching events closer to the root for most biologically relevant param-

eter regions that do not involve implausibly large speciation rates. It is noteworthy

that our comparison of model gene trees to model species trees yields qualitatively

similar patterns to the comparison of empirical trees to model species trees: em-

pirical phylogenies are less balanced than predicted by birth–death models (Blum

and François, 2006), and they have branching events closer to the root compared to

birth–death trees (Etienne and Rosindell, 2012).

Under the model, the differences in tree shape and branching times between

gene trees and species trees depend on a speciation rate λ, a turnover rate µ/λ,

and a sampling rate ρ. In particular, the relative timing of branching events in

gene trees compared to species trees depends mainly on the speciation rate λ: gene-

tree branching events are closer to the root than in species trees for small λ, and

closer to the tips for large λ. This result reflects the fact that for higher speciation

rates, species-tree branches are short, and thus, coalescences occur in more ancestral

populations, making gene trees more like Kingman-coalescent trees.

We emphasize that our model is a neutral model: speciation rates, extinction
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rates, and coalescent rates are assumed to be the same through time and across

lineages. However, relaxing this assumption to allow for rate heterogeneity will not

eliminate incomplete lineage sorting and thus, as in the constant-rate case, we expect

that gene trees will continue to differ in balance from species trees.

Are our parameter settings in the range of empirically observed parameter val-

ues? We can use the great ape tree to examine if our model parameters are sensible

in light of empirical observations. Recent estimates of the branch lengths in the

great ape tree, for which there is considerable evidence of incomplete lineage sorting

(Ebersberger et al., 2007; Burgess and Yang, 2008; Hobolth et al., 2011), lie between

0.7 and 3.7 coalescent time units (Schrago, 2014). Consider a birth–death model for

a species tree. The pure-birth model has the property that the mean branch length

in the species tree is 1/(2λ) coalescent units (Stadler and Steel, 2012), meaning

λ = 0.5 induces a mean branch length of 1. Thus, with µ = 0, setting λ to 0.5—a

value among those on which our analysis has focused—places branch lengths within

the range observed in the great ape tree.

For µ > 0, a mean branch length of 1 suggests higher λ; for λ = µ, the expected

pendant branch length under a birth–death process is 1/λ (Mooers et al., 2012), so

that the expected pendant branch length is 1 at λ = µ = 1. Bokma et al. (2012)

estimated the mean λ for the hominoid primate tree to be 0.46 per myr (95% con-

fidence interval 0.12-1.37). Assuming N = 30, 000 and g = 25 years—approximate

values from Schrago (2014) for the ancestor of humans and chimpanzees—produces

λ = 0.46 × 30, 000 × 25 × 10−6 = 0.276 speciations per coalescent unit (95% confi-

dence interval 0.072–0.822). Turnover was estimated close to 1, as the mean µ was

0.43 myr (95% confidence interval 0.01–1.44). These similarities of empirical trees

to a model with λ and µ on the order of 0.1 to 1 indicate that our approach of

centering parameter choices around such values is reasonable.

Obtaining unbiased empirical species trees requires using appropriate methods

for inferring species trees. Recent developments in estimation methods permit joint
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inference of species trees and gene trees, or inference of species trees from multiple

gene trees (Degnan and Rosenberg, 2009; Edwards, 2009; Liu et al., 2015; Szöllősi

et al., 2015; Ogilvie et al., 2016). Species trees estimated by such methods take into

account the hierarchical production of gene trees from species trees, and they do

not rely on an implicit or explicit identification of species trees with gene trees.

Thus, the shapes of species trees obtained by these methods would be expected to

follow a distribution appropriate to species trees. In our empirical analysis, however,

the set of previously published empirical phylogenies that we used to determine the

difference between empirical and model species trees dates as far back as 1994—

prior to the widespread use of phylogenetic tools that distinguish between gene

trees and species trees. The hypothesis that many of the empirical trees are in fact

gene trees rather than species trees explains some of the excess imbalance observed

in empirical tree-shape distributions; however, because our inflation of the Colless

statistic is only ∼1.08 for gene trees compared to species trees and the empirical

inflation of the statistic is ∼2, other factors are required for explaining the imbalance

in empirical trees. Because our number of time-calibrated empirical trees is low, our

temporal computations have been less exhaustive compared to those we performed

for tree shape; unlike for shape, at present, the empirical γ values—of which there

are fewer—are explained reasonably well by species-tree γ values.

We comment on two of the many factors that could influence the difference

between empirical trees and gene trees and species trees under our model. First,

we assumed in our analyses that the gene trees and species trees are known with-

out error. It is possible that reconstruction biases in tree estimation (Mooers and

Heard, 1997; Holton et al., 2014) could contribute to a difference between empirical

and theoretical distributions for trees. Second, even when species tree inference is

informed by gene tree discordance, species tree inference methods might generate

shape biases. For example, the minimize deep coalescence criterion (Maddison and

Knowles, 2006; Than and Nakhleh, 2009) is expected to produce highly balanced
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tree estimates (Than and Rosenberg, 2014) and indeed its empirical estimates are

more balanced than those obtained by other methods from the same data (DeGiorgio

et al., 2014).

We hope that this paper stimulates analytic and simulation-based investigations

of more complex nested species tree–gene tree models, thereby linking extensive tra-

ditions modeling species trees (Nee et al., 1994; Stadler, 2013) and modeling gene

trees conditional on fixed species trees (Degnan and Rosenberg, 2009). Only if we

understand the predictions produced by plausible null models—and the relation-

ships between those models and the assumptions underlying empirical trees—can

we produce a proper account of the macroevolutionary phenomena that give rise to

species tree patterns.
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