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does not adequately describe the M 3/4 scaling
of whole-organism metabolism for the species
in our study because they span different phys-
iological groups with different normalization
constants (4, 16) (fig. S1). Hence, the uniform
abundance scaling documented here across all
species indicates that, at any particular trophic
level, populations of similarly sized species in dif-
ferent physiological groups flux different amounts
of energy: endotherms > vertebrate ectotherms >
parasitic or free-living invertebrates (fig. S1).

The uniform scaling of abundance found here
has another general implication—that of “pro-
duction equivalence.” Specifically, species at the
same trophic level produce biomass at the same
average rate across all body sizes and functional
groups. This occurs because, in contrast to meta-
bolic rates, a single line can describe the M 3/4

scaling of individual biomass production, Pind,
for organisms of different physiological groups
(31) (fig. S1). Consequently, the population pro-
duction rate equals Ppop = PindN, which scales as
M3/4M –3/4 = M 0. Indeed, estimating population
production for the species in the three estuaries
supports the existence of this invariant biomass
production with body size (Fig. 4 and fig. S1)
(11). Thus, although population energy flux (and,
consequently, demand on resources) may vary
among physiological groups, opposing differences
in production efficiency among these groups cause
population biomass production to scale invariant
of body size across all groups. Because production
reflects biomass availability to consumers, pro-
duction equivalence indicates a comparable eco-

logical relevance for any single species within a
trophic level, regardless of body size or functional
group affiliation: invertebrate or vertebrate, ecto-
therm or endotherm, free-living or parasitic.

Accommodating parasitic and free-living
species into a common framework highlights the
utility of Eq. 3 to incorporate body size, temper-
ature, and food-web information into ecological
scaling theory in a simple and generally applica-
ble way. Equations 3 and 4 may allow testing of
the generality of the findings documented here for
any ecosystem and any form of life.
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Terraces in Phylogenetic Tree Space
Michael J. Sanderson,1* Michelle M. McMahon,2 Mike Steel3

A key step in assembling the tree of life is the construction of species-rich phylogenies from
multilocus—but often incomplete—sequence data sets. We describe previously unknown structure
in the landscape of solutions to the tree reconstruction problem, comprising sometimes vast
“terraces” of trees with identical quality, arranged on islands of phylogenetically similar trees.
Phylogenetic ambiguity within a terrace can be characterized efficiently and then ameliorated by
new algorithms for obtaining a terrace’s maximum-agreement subtree or by identifying the
smallest set of new targets for additional sequencing. Algorithms to find optimal trees or estimate
Bayesian posterior tree distributions may need to navigate strategically in the neighborhood of large
terraces in tree space.

Phylogenetic tree space, the collection of all
possible trees for a set of taxa, grows ex-
ponentially with the number of taxa, cre-

ating computational challenges for phylogenetic
inference (1). Nonetheless, phylogenetic trees
and comparative analyses based on them are
growing larger, with several exceeding 1000 spe-

cies [e.g., (2)] and a recent one exceeding 50,000
(3). Understanding the landscape of tree space
is important because heuristic algorithms for
inferring trees using maximum likelihood (ML),
maximum parsimony (MP), and Bayesian infer-
ence navigate through parts of this space guided
by notions of its structure [e.g., (4)]. Moreover,
analyses that use phylogenies to study evolution-
ary processes typically sample from tree space
to obtain a good statistical “prior” distribution
of phylogenetic relationships used in subsequent
comparative analyses, but the design of sam-
pling strategies hinges on the structure of tree
space (5).

An important advance in understanding tree
space was the formulation of the concept of “is-
lands” of trees with similar MP or ML optimality
scores (6, 7). Trees belong to the same island if
they are near each other in tree space and have
optimality scores of L or better with respect to
some data matrix. Distance in tree space can be
measured by the number of rearrangements re-
quired to convert one tree to another. Nearest
neighbor interchanges (NNIs), for example, are
rearrangements obtained by swapping two sub-
trees around an internal branch of a tree. Conflict-
ing signals or missing data can result in multiple
large tree islands, separated by “seas” of lower-
scoring trees, a landscape that can only be char-
acterized by lengthy searches through tree space
[e.g., (8)]. Empirical studies of phylogenetic tree
islands flourished in the context of the single-
locus data sets that were common in the 1990s.
However, maintaining the same level of accuracy
in the larger trees studied today requires com-
bining multiple loci (9). The most widely used
protocol for data combination is concatenation of
multiple alignments of orthologous sequences, one
next to another, analyzed as one “supermatrix,”
a procedure justified when gene tree discordance
is low between loci (10). Notably, a hallmark of
almost all large supermatrix studies is a sizable
proportion of missing entries.
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Consider a recent analysis (11) of deep ar-
thropod phylogeny, which combined 129 align-
ments of separate loci obtained largely from
expressed sequence tag libraries into a single
supermatrix for 117 taxa. We represent such a
collection of k multiple sequence alignments,
Di, which are concatenated, as a supermatrix,
D, of k loci by n taxa. Loci for which fewer than
n taxa have been sampled contain missing data
(35% in the arthropod study). Let Yi be the set of
taxon labels that have been sampled for locus i,

with the entire label set X ¼ ∪k
i¼1

Yi, and n = | X |.

A taxon coverage pattern, S ¼ fY1,...,Ykg, is a
collection of subsets of X. Consider any binary

tree T on X. Tree T displays a binary phylo-
genetic tree, T ′, if T jY ¼ T ′, where the vertical
bar means the subtree induced by restricting
T to just the taxa in Y. If T displays the k subtrees,
T jY1,…,T jYk , then it is a parent tree of these
subtrees. If T is the only such tree, the subtrees
define T, and S is decisive for T (12). LetL(D, T )
be a scoring function such as log likelihood,
giving the score, l 0, of tree T based on a sequence
alignment D, and (implicitly) a model of evo-
lution. Then

L(D,T ) ¼
Xk

i¼1

L(Di,(T jYi)) ð1Þ

This holds for MP because all sites are scored
separately but also holds for partitioned models
in ML [(13); e.g., RAxML (14); supporting on-
line text] and Bayesian inference [e.g., MrBayes
(15)]. It follows that any other tree that also
displays T |Y1, ..., T | Yk has the same score, l 0.
This leads to a fundamental observation:

The set of all parent trees of T |Y1, ..., T | Yk
has the same L-score as tree T, namely, l 0. We
call this set a terrace.

All trees on a terrace are distinct from each
other, but they are indistinguishable in two im-
portant respects: They display the same set of
subtrees, and they have the same optimality score.
Key properties of terraces can be understood
with the theory of phylogenetic supertrees (trees
constructed from collections of smaller trees). In
the following we assume that each of the k in-
duced subtrees can be rooted [for example, if
there is at least one taxon, a reference taxon,
sampled for all k loci (10)]. First, a terrace is part
of a tree island. This follows from (16), which

shows that trees in a terrace are all connected by
NNI tree rearrangements in the same way that
trees in an island are. Because they all have the
same score, they must form at least a subset of
some tree island whose threshold score, L, is
worse than theirs.

Second, the trees in a terrace can be enu-
merated with an algorithm that generates all par-
ent trees of a set of compatible subtrees (17). The
latter are induced by any tree, T, from the terrace,
together with the taxon coverage pattern, S. A
search through tree space checking optimality
scores is unnecessary, because the trees can be
built directly with S and T. This is useful because
the number of trees on a terrace can scale ex-
ponentially with the number of taxa in the dis-
played subtrees (18). Third, testing if two trees
are on the same terrace can be done quickly be-
cause it merely requires tests of tree equality of
the induced subtrees (10, 19). Finally, the trees in
a terrace can be summarized by a special con-
sensus tree used in the supertree literature [the
BUILD tree (20)] with three convenient proper-
ties: (i) It displays all the individual loci’s induced
subtrees; (ii) it is the Adams consensus tree of all
trees on the terrace (21); and (iii) it can be con-
structed in polynomial time (19). Figure 1 illus-
trates these ideas with a small example.

We examined three recently published large
supermatrix studies (11, 22, 23) (Table 1) that have
typical levels of partial taxon coverage (52 to
66%), but differ with respect to fractional de-
cisiveness, an index tied to the impact of missing
data on tree construction (10, 12). In an analysis
of arthropods (11) with 129 loci and a very high
fractional decisiveness (table S2), the 14 terraces
found had just a single tree on each. However, in

Lj Ap Aa Es La Cc

optimal tree

Cercis chinensis
Erythrina speciosa
Amorpha apiculata

Lotus japonicus
Lotononis acuticarpa

Aeschynomene pfundii

m
at

K

X

X
X

X

X
X

X
X

rb
cL

terrace of 13 equally optimal trees

taxon coverage matrix

Lj Ap Aa Cc Lj Es La Cc

induced subtrees

matK rbcL

Lj Ap Es La Aa Cc

BUILD tree

Fig. 1. Terrace in tree space for six species of the
angiosperm clade Leguminosae and two loci, matK
and rbcL (10). Taxon coverage is denoted by an
“X” when sequence data are present. The optimal
tree, an ML tree found using a partitioned model
in RAxML (ln L = −6709.8), induces two locus-
specific subtrees. Twelve additional trees for these
six taxa also display these subtrees, together com-
prising a terrace of 13 equally optimal trees (labels
and outgroup removed from trees on terrace). The
BUILD tree (20) is a consensus of all trees on the
terrace.

Table 1. Characteristics of data sets and their terraces.

Taxon/study Arthropods (11) Grasses (22) Colubrid snakes (23)

Number of taxa 117 298 767
Number of loci 129 3 5
Number of sites 37,476 5074 5814
Coverage density 0.65 0.66 0.52

Terraces

ML optimal tree

Terrace size 1 61.2 million 2205

ML suboptimal trees

Number found in 50
replicate searches

13 49 49

Smallest terrace size 1 893,025 315
Largest terrace size 1 >1 billion 33,075

MP optimal trees
Number found 1 8 8
Smallest terrace size 1 11,907 6615
Largest terrace size 1 4.1 million 6615
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analyses with more taxa, fewer loci, lower de-
cisiveness, but about the same fraction of miss-
ing data, terraces were much larger, ranging from
hundreds to billions of trees in likelihood and
parsimony searches (Table 1). Irrespective of ter-
race size, we could efficiently make the BUILD
tree for each terrace without heuristic searches
through tree space (e.g., running times of just
seconds for terraces with ~100 million trees).

Exploring the position of terraces in tree is-
lands is challenging because it involves searching
tree space. However, a sense of the structure of an
island in the immediate neighborhood of its peak
can be obtained relatively easily by examining
trees one rearrangement away, calculating their
likelihood scores, and determining the size and
number of terraces present. For the grass data
(22), the ML tree is on a terrace of 61 million
trees, and the tree itself is connected to 590 trees
one NNI rearrangement away. Of these, 198 trees
have a likelihood score within 5.0 log likelihood
units of the ML tree, which we use as a cutoff for
defining an island (10), and these comprise 168
distinct terraces the sizes of which range from
8.75 million to 428 million trees, or 1.1 × 1010

trees in all (Fig. 2). The island’s structure is com-
plicated by a broad plateau below the ML tree
consisting of both large and small terraces with
nearly equal likelihood scores.

The multiplicity of equally good trees in ter-
raced landscapes poses obstacles to downstream
comparative studies in ecology and evolutionary
biology. However, a useful reduction in ambigu-
ity can be obtained via a terrace’s maximum-
agreement subtree (MAST), which is a precise
phylogenetic hypothesis on a smaller set of taxa.
Although the MASTcan be found in polynomial
time when the input trees are binary (24), this

may be infeasible in the present setting where
there can be an exponentially large number of
trees on a terrace.

However, a more appropriate variant of this
problem can be solved efficiently (10), irrespective
of the size of the terrace. Given a set of compatible
rooted binary input trees, T1,…, Tkwith label sets
Y1, …, Yk; X ≡ Y1 ∪ … ∪ Yk, the Maximum
Defining Label Set problem seeks the largest la-
bel set X* ⊆ X, such that T1jX*,...,Tk jX* to-
gether define a parent tree T * on X *. For two
loci (subtrees), this problem can be solved ex-
actly in polynomial time (10). This could not be
directly used for our data sets, the smallest of
which (22) had k = 3 loci, so we used a heuristic
strategy, solving the problem for all (three) pairs
of loci (10). Removal of just 12 of 298 taxa re-
duced the terrace size of the ML tree from 61
million trees to one. Moreover, using a variant
of this algorithm, we infer that completely se-
quencing all three loci for these 12 taxa could
reduce the terrace size to one tree for the orig-
inal larger set of taxa (10), a considerable savings
over sequencing the entire 34% of the super-
matrix that is empty.

The discovery of terraces has implications for
search strategies for building large phylogenet-
ic trees on the basis of ML, MP, and Bayesian
methods that move through tree space. Each of
these approaches spends substantial computation-
al time evaluating scores on trees that are rear-
rangements of existing trees. Yet all trees within
a terrace must have the same score, so it makes
sense to direct tree search outside of known ter-
races. In Bayesian analysis, a better estimate of
the posterior distribution might be obtained by
quickly enumerating a sample of trees on a ter-
race once the first tree is visited. The extraordi-

narily large size of some terraces, however, makes
exhaustive exploration of the islands inwhich they
are found problematic because searching between
terraces via tree rearrangements is still necessary.
Progress may require engineering a compact
data structure for the trees in a terrace to allow
computing on what may be vast collections
of reasonable trees in tree space. Otherwise, the
boundaries of islands in complex data sets will
likely remain shrouded.
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Fig. 2. Visualization of terraces in tree space near the ML tree for the grass data set (22). Areas of
terraces are proportional to number of trees and height to likelihood score. Total number of trees on all
terraces illustrated exceeds 10 billion.
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