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Abstract 

The molecular clock presents a means of estimating evolutionary rates and timescales using genetic 

data. These estimates can lead to important insights into evolutionary processes and mechanisms, as 

well as providing a framework for further biological analyses. In order to deal with rate variation 

among genes and among lineages, a diverse range of molecular-clock methods have been developed. 

These methods have been implemented in various software packages and differ in their statistical 

properties, ability to handle different models of rate variation, capacity to incorporate various forms of 

calibrating information, and tractability for analysing large data sets. Choosing a suitable molecular-

clock model can be a challenging exercise, but a number of model-selection techniques are available. 

In this review, we describe the different forms of evolutionary rate heterogeneity and explain how 

they can be accommodated in molecular-clock analyses. We provide an outline of the various clock 

methods and models that are available, including the strict clock, local clocks, discrete clocks, and 

relaxed clocks. Techniques for calibration and clock-model selection are also described, along with 

methods for handling multilocus data sets. We conclude our review with some comments about the 

future of molecular clocks.  
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Introduction 

Understanding evolutionary rates and timeframes can provide useful insights into biological processes 

and mechanisms, as well as forming an important basis for a range of further analyses and 

interpretation. Until the past few decades, our knowledge of evolutionary timescales was based 

entirely on the fossil record. This was transformed by the development of the molecular clock in the 

1960s (Doolittle & Blombäck, 1964; Margoliash, 1963; Zuckerkandl & Pauling, 1962; Zuckerkandl 

& Pauling, 1965), which raised the possibility of inferring evolutionary timescales using genetic data. 

The molecular clock posits a constant rate of genetic change among lineages, such that estimates of 

rates can be extrapolated across the Tree of Life to infer the timing of evolutionary divergence events. 

For this reason, the molecular clock has become a valuable component of phylogenetic analysis.  

 

In its original and simplest form, the molecular clock assumes homogeneous rates among taxa 

(Zuckerkandl & Pauling, 1962). This is sometimes expressed as a linear relationship between genetic 

distance and time since divergence, with the slope of this line corresponding to the evolutionary rate. 

The inadequacy of this simple model was exposed by burgeoning evidence of rate variation among 

species, especially among divergent taxa, providing substantial impetus for methodological 

development (Welch & Bromham, 2005). As a result, molecular clocks have undergone considerable 

evolution over the five decades since they were first used (Bromham & Penny, 2003; Ho, 2014; 

Kumar, 2005). One of the most notable features of the progress in molecular-clock methods and 

models has been an increase in their complexity. This has been made possible by the growing 

availability of genetic data, dramatic improvements in computational power, and the development of 

the Bayesian phylogenetic framework (Heath & Moore, 2014).  

 

A wide range of molecular-clock models and methods, implemented in various statistical 

phylogenetic settings, are now available to biologists. Choosing among these is not a trivial task and 

there are various statistical and practical factors that need to be considered (Sauquet, 2013; Wilke et 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

al., 2009). These include the size of the data set, which has important implications for the 

performance of different methods and for computational requirements. In addition, all molecular 

clocks need to be calibrated using independent temporal information so that they yield estimates of 

absolute, rather than relative, ages. Calibrations are usually based on fossil or geological evidence and 

their choice can have an enormous impact on molecular estimates of evolutionary timescales (Hipsley 

& Muller, 2014; Ho & Phillips, 2009; Inoue et al., 2010; Parham et al., 2012).  

 

Here we provide an overview of molecular-clock analysis, focusing on the developments of the 

past two decades. We begin by summarising the process of estimating evolutionary timescales from 

genetic data, then we compare different patterns of evolutionary rate variation and explain how they 

can be taken into account in molecular-clock studies. After presenting an outline of the different 

methods and models, we describe some of the available techniques for model selection. Finally, we 

highlight a number of areas for further research.  

 

Estimating evolutionary timescales 

Estimating evolutionary rates and timescales from genetic data is a complex procedure that 

typically involves the use of several different methods and programs. The process can be divided into 

five major steps (Sauquet, 2013): assembling a data set, choosing calibrations, choosing a molecular-

clock method and model of rate variation, running the analysis, and interpreting the results. Each of 

these steps requires considerable care and the researcher must choose from a variety of methods that 

are available.  

 

Most molecular-clock analyses involve protein or DNA sequences, although various other forms 

of genetic data have also been used (e.g., Sun et al., 2009; Wang et al., 2011). Protein sequences were 

among the main sources of information for molecular evolutionary analyses until the development of 
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DNA-sequencing techniques in the 1970s. DNA sequences are now the dominant form of data used in 

molecular-clock analyses, although protein sequences are still used for studying deep divergences 

because DNA sequences are saturated over such timeframes (e.g., Blank & Sánchez-Baracaldo, 2010; 

Matari & Blair, 2014). 

 

An increase in size has been an obvious trend among the data sets used to estimate evolutionary 

rates and timescales. Most of the early molecular-clock studies were based on single genes, 

particularly from the mitochondrial and chloroplast genomes. Data sets comprising multiple genes, 

often including markers from both nuclear and organellar genomes, became commonplace from the 

late 1990s onwards. More recently, genome-scale data sets have become available, bringing 

substantial challenges for molecular-clock analyses because of their size, complexity, and 

computational demands (dos Reis & Yang, 2011; Guindon, 2010; Ho, 2014).  

 

In all molecular dating analyses, the single most important component is the choice of 

calibrations (Box 1; Figure 1). The molecular clock can be calibrated by incorporating information 

about the absolute rate or absolute node ages. In the absence of a known substitution rate, node-based 

calibrations provide the sole source of information about absolute times. Errors in these calibrations 

can be propagated throughout the tree, leading to errors in all of the estimates of divergence times. 

These problems can partly be mitigated by employing calibrations at multiple nodes throughout the 

tree, which generally leads to an improvement in estimates of rates and node times (Duchêne et al., 

2014a; Lukoschek et al., 2012; Paradis, 2013).  

 

If reliable calibrations are unavailable, molecular-clock analysis should not be attempted unless 

the objective is to estimate relative rather than absolute node times. Provided that at least one reliable 

calibration can be identified, the next step in a molecular-clock study is to choose appropriate 
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methods and models. These include the method of analysis, model of nucleotide substitution, and the 

molecular-clock model. In Bayesian molecular-clock analyses, the prior distribution of node ages also 

needs to be specified (Box 2). Methods for selecting the best-fitting model of nucleotide substitution 

have been reviewed in detail elsewhere (Sullivan & Joyce, 2005). Here we focus on the different 

methods and molecular-clock models that are available, with their fit being dependent on the patterns 

of rate variation in the data. Below we summarise the different forms of rate variation before 

describing the models that have been developed to account for this heterogeneity.  

 

Variation in rates of molecular evolution 

In its original form, the molecular clock hypothesis proposed a constancy of rates among 

lineages but allowed different genes to evolve at different rates. Variation in rates among genes was 

attributed to differences in functional importance, with the substitution rate being negatively related to 

the proportion of selectively constrained sites in each gene (Dickerson, 1971; Kimura & Ohta, 1974). 

Subsequent work has also revealed that rates vary among lineages and that the pattern and extent of 

this among-lineage rate heterogeneity can differ across genes. Accordingly, rate variation can be 

partitioned into three components: gene effects, lineage effects, and gene-by-lineage effects (Muse & 

Gaut, 1997; Smith & Eyre-Walker, 2003). Factors that cause rate variation across sites, known as site 

effects, are sometimes treated separately (Gaut et al., 2011), but we subsume these into our discussion 

of gene effects for convenience. In addition, site effects are primarily accommodated by nucleotide 

substitution models (Yang, 1994), rather than by molecular-clock models.  

 

Gene effects, also known as locus effects, lead to differences in absolute evolutionary rates 

across genes. In mammals, for example, fibrinopeptides evolve more rapidly than haemoglobin and 

cytochrome c, which both evolve more rapidly than histones (Kimura & Ohta, 1974). This can be a 

consequence of among-site rate variation (site effects) and disparities among genes in the proportion 

of sites under selection (Mouchiroud et al., 1995; Zuckerkandl, 1976). Mutation rates can also vary 
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across regions and between nuclear and organellar genomes (Brown et al., 1982; Wolfe et al., 1987), 

being influenced by nucleotide composition and other factors (Bulmer et al., 1991).  

 

Lineage effects refer to factors that cause rates to vary among taxa, but that act across the 

genome so that all genes are affected equally (Gillespie, 1989). This includes factors that cause 

systematic variation in mutation rates among lineages. Mutations can be the result of copying errors 

or spontaneous DNA damage, such that rates of mutation are influenced by the frequency of DNA 

replication (generation time), metabolic rates, exposure to UV radiation, and the efficiency of DNA 

repair mechanisms (Bromham, 2011). The effect of generation time on substitution rates has received 

considerable attention and has been detected in a range of taxa (e.g., Kim et al., 2006; Thomas et al., 

2010).  

 

Gene and lineage effects can occur in combination, leading to a pattern in which gene-specific 

rates vary in a fixed ratio among lineages (Snir et al., 2012). For example, gene A might evolve at 

twice the rate of gene B, with this ratio remaining constant among lineages even as the absolute rate 

varies among lineages. This form of rate heterogeneity can be accommodated by most available 

molecular-clock models, as described in the next section. 

 

Interactions between gene and lineage effects, also referred to as residual effects (Gillespie, 

1991), can lead to much more complex patterns in which the extent and distribution of among-lineage 

rate variation differs among genes (Muse & Gaut, 1997). Various studies have uncovered evidence of 

residual effects in mitochondrial, chloroplast, and nuclear genes (Duchêne & Ho, 2014; Mower et al., 

2007; Muse & Gaut, 1997). Residual effects can be caused by changes in population size, which lead 

to changes in proportions of effectively neutral sites among genes (Takahata, 1987). Selection can act 

on a subset of genes in a particular set of taxa, leading to disparate gene effects along different 
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branches of the tree (Cutler, 2000). Even when the evolutionary process is dominated by neutral 

mutations, various factors have the potential to produce residual effects (Takahata, 1987). Not all 

molecular-clock models are able to account explicitly for residual effects.  

 

Molecular-clock methods and models 

The simplest molecular-clock model assumes homogeneous rates among branches of the phylogeny. 

This is usually referred to as a strict or global molecular clock. The strict-clock model has only a 

single parameter: the rate of evolution. The rate is typically expressed in substitutions per site per year 

or substitutions per site per million years, depending on the temporal scope of the analysis. The strict 

clock is often used in analyses of sequence data sampled at the intraspecific level, for which there is 

an expectation of low rate variation among branches (Brown & Yang, 2011). This is because many of 

the factors associated with lineage effects, such as differences in generation time and DNA repair 

mechanisms, are unlikely to show measurable variation among conspecific individuals. The strict 

clock is also used as a null model for testing for the presence of among-lineage rate heterogeneity, 

often as one of the first steps in a molecular dating analysis (Peterson, 2006).  

 

The strict clock has been implemented in several different ways and in a wide range of 

phylogenetic software (Table 1). Many of the earlier molecular-clock studies calculated linear 

regressions on plots of pairwise genetic distances against divergence times inferred from the fossil 

record (e.g., Dickerson, 1971; Doolittle et al., 1996; Runnegar, 1982). Unknown times of divergence 

could then be estimated by applying the equation of the regression line to genetic distances estimated 

from the taxa of interest. This approach was largely made obsolete by phylogenetic implementations 

of the strict clock, which took evolutionary relationships into account and allowed the simultaneous 

estimation of divergence times throughout the tree (Langley & Fitch, 1974). More recently, the strict 

clock has been incorporated into Bayesian phylogenetic methods, permitting greater flexibility in 
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accounting for uncertainty in the tree topology and in the calibrations (e.g., Drummond et al., 2006; 

Ronquist et al., 2012b).  

 

With the exception of sequences sampled at the population level, lineage effects cause most 

genetic data to exhibit significant departures from the strict molecular clock. To accommodate this 

rate variation among branches, a number of molecular-clock models relax the assumption of rate 

homogeneity. Most of the available models assume that the rate is constant along each branch, but 

permit variation among the branch-specific rates. These models can be categorised in a number of 

ways, depending on their statistical motivations, assumptions about how rates vary among branches, 

and the extent to which they allow co-estimation of other parameters (Rutschmann, 2006; Welch & 

Bromham, 2005).  

 

In order to classify molecular-clock models, we find it convenient to distinguish among them on 

the basis of the number of distinct rates (k) that are assigned to branches across the tree (Table 1; 

Figure 2). In this regard, k=1 represents the strict-clock model described above. In contrast, a relaxed-

clock model is one in which k equals the number of branches in the tree (n), such that each branch is 

permitted to have a distinct rate. When 1<k<n, there is a limited number of rates across the tree and 

some branches share the same rate; the number of distinct rates is usually much smaller than the 

number of branches. We call these the multi-rate clock models. We draw a further distinction between 

multi-rate clocks that merely involve a limited number of distinct rates across the tree and those that 

assign rates to groups of neighbouring branches. We also distinguish among relaxed clocks on the 

basis of whether they are implemented in rate-smoothing methods or as parametric models of rate 

variation in Bayesian and likelihood-based phylogenetic methods.  
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Multi-rate molecular clocks 

In multi-rate clock models, there is limited rate variation across the phylogeny, with the number of 

distinct substitution rates being greater than 1 but smaller than the number of branches in the tree. In 

some multi-rate clock models, the branches sharing the same rate are clustered together to form local 

clocks. In other multi-rate clock models, which we refer to as ‘discrete’ clocks (following Fourment 

& Holmes, 2014), the branches sharing the same rate are distributed throughout the tree rather than 

being locally clustered. Some of the methods that implement multi-rate clock models can employ both 

local and discrete variants, depending on how the user assigns rates to branches (Table 1). These 

include the software PAML (Yang, 2007) and r8s (Sanderson, 2003).  

 

Local clocks are based on the assumption that closely related lineages are more likely to share 

evolutionary rates. In these models, the phylogeny is assumed to comprise clusters of branches, with 

each cluster having a distinct substitution rate. The clusters are often defined on some biological 

basis, for example by allowing different taxonomic groups to have distinct rates (Hasegawa et al., 

1989; Yoder & Yang, 2000). Some methods require the assignment of rates to branches to be done 

prior to the analysis, such that the tree topology needs to be fixed.  

 

In practice, there is not always a clear biological justification for choosing from among the 

numerous possible delineations of local clocks. One solution is to model the process of rate change 

across the tree, as in the compound Poisson process (Huelsenbeck et al., 2000; Ronquist et al., 2012b). 

In this approach, changes in the substitution rate occur across the tree according to a Poisson process. 

At each of these events, the ancestral rate is multiplied by a random number to give the descendent 

rate. The original version of the model was overparameterised (Rannala, 2002), but this problem was 

remedied in a subsequent implementation of the model in MrBayes (Ronquist et al., 2012a). 
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The random local clock (RLC) model, implemented in the Bayesian phylogenetic software 

BEAST (Drummond et al., 2012), allows simultaneous estimation of the phylogeny, node times, and 

rate-change events across the tree (Drummond & Suchard, 2010). In the RLC framework, an 

approach known as Bayesian stochastic search variable selection is used to infer whether a branch 

inherits the substitution rate from its parent or not. The Bayesian implementation of the RLC model 

makes it straightforward to account for phylogenetic uncertainty, because the tree topology is sampled 

during the Markov chain Monte Carlo analysis. The posterior estimate of the number of distinct rates 

and the assignment of rates to branches are thus integrated across the uncertainty in the tree. In their 

RLC analysis of three example data sets (mammals, primates, and influenza virus), Drummond and 

Suchard (2010) found that rate variation could be described using a small number of local clocks.  

 

In discrete multi-rate clocks, rates are shared by branches that are not necessarily adjacent to 

each other. The assignment of rates to branches can be biologically informed or they can be estimated. 

In some cases, the assignment of rates to branches depends on the distribution of particular biological 

characteristics that are believed to influence substitution rates. For example, separate substitution rates 

might be assigned to parasitic versus non-parasitic lineages (Bromham et al., 2013) or to sexually 

versus asexually reproducing lineages (Neiman et al., 2010). This provides a useful framework for 

testing hypotheses about the causes of evolutionary rate variation (Lanfear, 2011).  

 

In the absence of information about how rates might vary among lineages, the number (k) and/or 

assignment of rates among branches can be determined statistically. In the ad-hoc rate smoothing 

(AHRS) method described by Yang (2004), branch-specific rates are grouped into a chosen number of 

rate categories. Prior to this step, the rate variation among branches is estimated using an 

autocorrelated model of rate change (described in the next section). A subsequent modification of the 

AHRS method included automatic selection of the number of rate categories (Aris-Brosou, 2007).  
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Heath et al. (2012) used a Dirichlet process prior (DPP) to assign the branch-specific rates to k 

categories. This DPP model, implemented in the programs DPPDiv and RevBayes (Table 1), includes 

as special cases the strict clock (k=1) and the relaxed clock (k equal to the number of branches). The 

rates for the categories are drawn from a gamma distribution, in which the concentration parameter 

(α) governs both the number of rate categories as well as the number of branches that are assigned the 

rate in each category. A simulation study showed that the DPP model yielded estimates with greater 

accuracy than several other models of rate variation, without substantially compromising precision 

(Heath et al., 2012). In the DPP and AHRS methods, assignments of branch-specific rates to 

categories are statistically motivated and are not necessarily biologically meaningful.  

 

Relaxed clocks: Rate-smoothing methods 

Relaxed clocks allow a distinct substitution rate along each branch in the tree. The earliest relaxed-

clock methods were inspired by the idea of rate autocorrelation, whereby rates change gradually along 

lineages because they are tied to life-history and environmental factors that exhibit some degree of 

temporal autocorrelation (Gillespie, 1991). Accordingly, the aim of these methods was to minimise or 

smooth changes in rates between adjacent branches in the phylogeny (Sanderson, 1997; Sanderson, 

2002). There are now several different methods based on a such a rate-smoothing approach (Table 1), 

including non-parametric rate smoothing (Sanderson, 1997), penalised likelihood (Sanderson, 2002), 

mean path length (Britton et al., 2002), and Pathd8 (Britton et al., 2007). Non-parametric rate 

smoothing and penalised likelihood are both available in the program r8s (Sanderson, 2003), but there 

are also implementations of penalised likelihood in the R package APE (Paradis, 2013) and treePL 

(Smith & O'Meara, 2012).  

 

Non-parametric rate smoothing uses an optimisation algorithm to minimise differences in 

substitution rates among lineages (Sanderson, 1997). The objective function is the sum of squared 

differences in rates between adjacent branches. For convenience, the rate at the root node is assigned 
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the mean rate across the tree. The method allows the use of multiple calibrations, whereby the 

optimisation is restricted to parameter space within the constraints imposed by the calibrations. 

Sanderson (1997) proposed the use of bootstrapping to obtain confidence intervals for estimates of 

node ages. However, this approach has been criticised because it does not account for uncertainties in 

the calibrations and can lead to confidence intervals that are deceptively narrow, especially if the 

amount of sequence data is large (Thorne & Kishino, 2005; Yang, 2014).  

 

Penalised likelihood is a semi-parametric method that applies a penalty to rate changes between 

neighbouring branches (Sanderson, 2002). The method includes a smoothing parameter, λ, which 

governs the magnitude of the penalty. The optimal value of the smoothing parameter can be 

determined using leave-one-out cross-validation based on removal of terminal branches (Sanderson, 

2002). The penalised likelihood is then optimised, allowing estimation of the branch-specific rates 

and divergence times across the tree. Estimates of uncertainty in node times can be obtained via 

parametric bootstrapping (Sanderson, 1997; Sanderson, 2003) or by reporting the spread of node 

times within 2 log-likelihood units of the maximum-likelihood estimates (Smith & O'Meara, 2012).  

 

Mean path length (MPL; Britton et al., 2002) and Pathd8 (Britton et al., 2007) are rate-smoothing 

methods that average the differences in rates between sister lineages. Both methods are based on path 

lengths, which are the sums of the lengths of branches that connect each of the internal nodes to its 

descendent tips. The MPL method estimates the relative node ages as the average length of the paths 

that descend from each node in the tree. The relative node ages can be rescaled to give absolute times 

by applying a calibration to one of the nodes. A limitation of this method is that the estimates of node 

times can be unreliable if there is large degree of among-lineage rate variation. This can be detected 

by testing whether sister paths descending from an internal node have significantly different lengths, 

so a P-value is computed for every node.  
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Pathd8 is based on the same principle as the MPL method, but can incorporate high levels of 

among lineage rate variation by including multiple calibrations (Britton et al., 2007). The calibrations 

can impose large rate differences along the tree. For example, if a tree has two calibrating nodes, the 

subtree descending from each node can have a very distinct substitution rate. The relative node ages 

are estimated as a weighted average of the mean path length of the subtrees (Britton et al., 2007). This 

technique can result in a lower degree of rate smoothing than in the MPL method. 

 

Rate-smoothing methods rely on other methods to estimate the tree topology and branch lengths. 

This can be done using fast phylogenetic methods (e.g., Stamatakis et al., 2012), meaning that rate-

smoothing methods are readily scalable to genomic data sets. Generally, rate-smoothing methods are 

very fast even for data sets with large numbers of taxa (Britton et al., 2007; Smith & O'Meara, 2012). 

Although they require a fixed tree topology for estimating rates and divergence times, phylogenetic 

uncertainty can be taken into account using ad-hoc methods (Aris-Brosou, 2007). Nevertheless, a 

more satisfying and direct solution is provided in some of the Bayesian relaxed-clock methods 

described below. In addition, Bayesian methods allow uncertainty in calibrations to be taken into 

account appropriately, in contrast with rate-smoothing methods and other likelihood-based methods 

for molecular dating (Yang, 2014). 

 

Relaxed clocks: Parametric and Bayesian methods 

Bayesian phylogenetic methods can incorporate parameter-rich models of evolution, providing a 

suitable context for implementing relaxed molecular clocks. By using Markov chain Monte Carlo 

sampling to estimate posterior distributions of parameters, Bayesian methods can deal with complex 

evolutionary models that would otherwise be intractable in a maximum-likelihood framework (Heath 

& Moore, 2014; Huelsenbeck et al., 2001). Bayesian relaxed-clock methods estimate the rate along 

each branch, either using a fixed tree topology or while co-estimating the phylogeny and node times 

(Table 1).  
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Bayesian relaxed clocks include two classes of models, autocorrelated and uncorrelated clocks, 

which differ in their assumptions about the nature of rate variation among branches. Autocorrelated 

relaxed clocks assume that neighbouring branches share similar rates (Lepage et al., 2006; Thorne et 

al., 1998). In this sense, the motivating principle behind autocorrelated relaxed-clock models is 

similar to that of local-clock models, but the methods differ in the number of branch-specific rates 

across the tree. Autocorrelated relaxed-clock models are available in various Bayesian phylogenetic 

programs, including BEAST (Drummond et al., 2012), MCMCtree in PAML (Yang, 2007), MrBayes 

(Ronquist et al., 2012b), Multidivtime (Thorne et al., 1998), PhyloBayes (Lartillot et al., 2009), 

PhyTime (Guindon, 2013), and RevBayes (http://sourceforge.net/projects/revbayes). 

 

Rate autocorrelation has been modelled in several different ways. In the autocorrelated lognormal 

relaxed-clock model, the rate along each branch is drawn from a lognormal distribution with a mean 

equal to the rate along the parent branch (Kishino et al., 2001; Thorne et al., 1998). The autocorrelated 

gamma relaxed clock is similar, but each rate is drawn from a gamma distribution with a mean equal 

to the parent rate (Aris-Brosou & Yang, 2002). In both cases, the variance of the distribution is 

proportional to the time duration of the branch. In this way, the rate can be regarded as a quantitative 

trait that evolves through time, perhaps in correlation with life-history characteristics. One problem 

with these autocorrelated relaxed-clock models is that there is no bound to the potential increase in 

substitution rate over time (Lepage et al., 2006). The more complex Ornstein-Uhlenbeck process 

(Aris-Brosou & Yang, 2002) and Cox-Ingersoll-Ross models (Lepage et al., 2006) were implemented 

with the aim of correcting this non-stationary behaviour, but the Ornstein-Uhlenbeck-process model 

involves a systematic decline in the rate over time (Welch et al., 2005). 

 

Rate changes in the autocorrelated exponential relaxed-clock model occur in a time-independent 

manner (Aris-Brosou & Yang, 2002). In this model, each branch-specific rate is sampled from an 

exponential distribution with mean equal to the rate along the parent branch. The standard deviation is 
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equal to the mean in the exponential distribution, such that variance in the rate depends on the 

magnitude of the mean rate rather than on the time elapsed. This time-independence of rate 

autocorrelation, reflecting a punctuated or episodic mode of rate change, is a feature shared with the 

rate-smoothing methods described above.  

 

In uncorrelated relaxed-clock models, also known as independent-rates models, there is no 

assumption of correlation between rates in neighbouring branches (Drummond et al., 2006; Lepage et 

al., 2007; Rannala & Yang, 2007). Instead, the branch-specific rates are all sampled from a chosen 

distribution, such as a lognormal, exponential, or gamma distribution. A lognormal distribution would 

suggest that the branch-specific rates tend to cluster around a mean value, whereas an exponential 

distribution would suggest that many branches have low substitution rates. The parameters of the 

chosen rate distribution are estimated in the analysis and can provide a measure of rate heterogeneity 

among lineages. In addition, the degree of autocorrelation can potentially be estimated by examining 

the relationship between rates along neighbouring branches in the tree (Drummond et al., 2006; 

Linder et al., 2011). In all uncorrelated relaxed-clock models, substitution rates change abruptly at 

nodes in the tree but remain constant along branches, similar to some of the rate-smoothing methods 

and the autocorrelated exponential relaxed clock.  

 

Although uncorrelated relaxed clocks are mostly available in Bayesian phylogenetic methods, 

they have also been implemented in a penalised-likelihood framework by Paradis (2013). This differs 

from the penalised-likelihood approach described in the previous section in that the penalty term is 

not based on the magnitude of rate changes between branches, but on the fit of the branch-specific 

rates to a distribution chosen by the user. Paradis (2013) suggested the use of a gamma distribution for 

this purpose. Although penalised-likelihood relaxed clocks carry the benefit of low computational 

burden, they have the considerable disadvantage of being unable to account readily for uncertainty in 

the tree topology and calibrations.  
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The different models of among-lineage rate heterogeneity have varying levels of biological 

plausibility (Ho, 2009; Welch & Bromham, 2005). In particular, the relative fit of autocorrelated and 

uncorrelated models of rate change is a subject of ongoing inquiry. Different studies have yielded 

support for either autocorrelated rates (Lepage et al., 2007) or uncorrelated rates (Drummond et al., 

2006; Linder et al., 2011). The variation among these results might be due to the difficulty in 

detecting autocorrelation in evolutionary rates using phylogenetic molecular-clock methods 

(Battistuzzi et al., 2010; Ho, 2009; Ho et al., 2014; Paradis, 2013). In addition, the degree of 

autocorrelation in a data set might depend on the scale of analysis and the density of taxon sampling, 

with lower rate autocorrelation expected when phylogenetic distances are large (Lepage et al., 2007; 

Linder et al., 2011). Comparisons of the various relaxed-clock models, including simulation studies 

and analyses of a range of data sets, are needed to improve our understanding of this aspect of 

molecular-clock analysis (Heath & Moore, 2014).  

 

Models for multilocus data 

Phylogenetic analyses often involve data sets comprising sequences from multiple loci. Common 

practice is to partition the data set, such as by gene or by codon position, and to assign separate 

substitution models to the data subsets (Yang, 1996). In molecular-clock analyses, the simplest 

approach is to apply a single model of among-lineage rate variation to the whole sequence alignment. 

However, this fails to account for heterogeneity among genes, which might have evolved under very 

different conditions. For example, multilocus data sets might include combinations of markers from 

mitochondrial, chloroplast, and nuclear genomes.  

 

To account for gene effects in the data set, each gene can be assigned a parameter that describes 

its substitution rate (Figures 3a and 3b). This parameter represents the global rate in the strict-clock 

model, the ancestral rate at the root in autocorrelated relaxed-clock models, or the mean rate in 

uncorrelated relaxed-clock models (dos Reis et al., 2014). Thorne and Kishino (2002) used a gamma 
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prior distribution for the gene-specific rates. However, dos Reis et al. (2014) pointed out that this 

approach can strongly mislead estimates of divergence times when the data set comprises many genes 

and if the prior is misspecified. To correct this problem, they proposed the use of a Dirichlet prior for 

the gene-specific rates.  

 

Multilocus data sets can exhibit more complex patterns of rate variation in the form of residual 

effects, whereby the pattern of among-lineage rate heterogeneity varies among genes. In these cases, a 

separate relaxed-clock model might need to be assigned to each gene (Thorne & Kishino, 2002), 

although this approach is only possible in a few molecular-clock methods (Table 1). When the data 

set comprises a large number of genes, implementing multiple relaxed-clock models can lead to an 

excessive number of parameters. Instead, a limited number of clock models can be applied to chosen 

subsets of the data (Figure 3c). For example, one relaxed clock might be assigned to nuclear genes 

and another to organellar genes (Thornhill et al., 2012). In some cases, assigning separate relaxed 

clocks to different codon positions might be appropriate (Ho & Lanfear, 2010). Choosing a clock-

partitioning scheme poses an interesting challenge and can have a considerable influence on the 

resulting estimates of divergence times (Duchêne et al., 2014a). Fortunately, methods are available for 

this purpose, as described in the next section.  

 

Model selection 

Selecting an appropriate molecular-clock model for the data is crucial. As with all model selection, 

this involves identifying an acceptable balance between model complexity and goodness of fit 

(Burnham & Anderson, 2002). In particular, the aim is to identify the simplest model that captures the 

essential biological features of the data (Steel, 2005). The fit of different candidate models is not 

always intuitively obvious and best practice involves objective statistical comparison. A poor choice 

of clock model can result in highly misleading estimates of divergence times (e.g., Worobey et al., 

2014).  
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In most molecular-clock analyses, the first step is to test the hypothesis of a strict clock 

(Peterson, 2006). This determines whether there is sufficient rate variation among lineages to warrant 

the use of more complex clock models. If the hypothesis of rate constancy is unable to be rejected, the 

use of a strict clock is preferred because it has the fewest parameters and generally leads to the most 

precise estimates of divergence times (Brown & Yang, 2011; Ho et al., 2005). However, the growing 

size of data sets that are used in molecular-dating analyses means that the strict clock is now almost 

invariably rejected.  

 

The first tests of the strict molecular clock involved the comparison of rates along the branches 

leading to two taxa while using a third taxon as a reference point. Known as relative-rates tests, these 

have been implemented in various statistical settings (Muse & Weir, 1992; Wu & Li, 1985). The 

advantage of relative-rates tests is that they do not require the evolutionary relationships to be known, 

except that the two taxa being compared need to be more closely related to each other than to the 

reference taxon. Methods based on whole phylogenetic trees are more generally useful because they 

not only allow the strict-clock model to be tested, but also allow comparisons of various models of 

rate variation among branches. Therefore, our focus here is on whole-tree methods.  

 

Likelihood-based methods 

There are several likelihood-based selection criteria for clock models. The likelihood-ratio test (LRT) 

provides a means of comparing nested models, including clock models (Felsenstein, 1981). The 

statistic used in this test is twice the difference in log likelihoods, which is approximately chi-squared 

distributed with degrees of freedom equal to the difference in the number of free parameters between 

the two models being compared. The LRT is regularly used to test the strict clock against a model in 

which there are no constraints on branch lengths (the unconstrained model).  
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Non-nested evolutionary models, such as the different relaxed-clock models, can be compared 

using likelihood-based criteria such as the Φ information criterion (ΦIC, Paradis, 2013). The ΦIC is 

similar to the Akaike information criterion, but includes the contribution of a penalty term that 

constrains among-lineage rate variation. In the autocorrelated relaxed clock, this penalty term, along 

with its associated smoothing parameter, correspond to those in the penalised-likelihood method of 

Sanderson (2002). In the uncorrelated relaxed clock, the penalty term is based on the fit of the branch-

specific rates to a chosen distribution. A simulation study showed that the performance of the ΦIC 

was mixed, with the strict-clock model favoured even when data were generated using an 

autocorrelated relaxed clock (Paradis, 2013). The utility of this model-selection criterion remains 

unclear.  

 

Bayesian methods 

The most common method of Bayesian model selection involves the calculation of marginal 

likelihoods. These allow pairwise comparisons of models, regardless of whether they are nested or 

not, using Bayes factors (Jeffreys, 1935; Jeffreys, 1961; Kass & Raftery, 1995). There are several 

different methods for calculating marginal likelihoods and Bayes factors, varying in their performance 

and computational demands (Box 3). In addition to comparing different models of rate variation 

among branches, Bayes factors can be used to compare the fit of different parameter values for the 

same clock model. For example, different numbers of rate categories (k) in the Dirichlet-process-prior 

model can be compared, with k=1 indicating a strict clock (Heath et al., 2012). In the framework of 

the random local clock, Bayes factors can be used to test the strict-clock model, in which all of the 

branches across the tree have inherited the substitution rate at the root (Drummond & Suchard, 2010).  

 

In some relaxed-clock models, posterior estimates of parameters can provide insights into 

whether the model is appropriate for the data. For example, the variance parameter of the 

autocorrelated lognormal clock can be estimated to quantify the degree of rate autocorrelation 
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(Thorne et al., 1998). More generally, the extent of rate heterogeneity among lineages can be 

determined by the coefficient of rate variation, given as the standard deviation of the branch-specific 

rates divided by the mean of these rates. Very small values of the coefficient of rate variation are 

consistent with a strict clock (Drummond et al., 2006). In addition, the covariance of rates between 

neighbouring branches can be measured, providing a measure of rate autocorrelation throughout the 

tree (Drummond et al., 2006). However, this method does not appear to perform well in practice, 

having failed to detect any evidence of autocorrelated rates across a diverse range of studies and 

simulation scenarios (Battistuzzi et al., 2010; Ho et al., 2014; Linder et al., 2011).  

 

The choice of priors on branch-specific rates and node times, as well as the hyperpriors for the 

parameters of these models, can have considerable impacts on Bayesian estimates of evolutionary 

rates and timescales (e.g., Ho et al., 2005; Welch et al., 2005). This highlights the importance of 

evaluating the sensitivity of the estimates to the choice of priors and hyperpriors. Given the range of 

clock models and other priors available to the user, however, comprehensive assessments of the 

robustness of molecular-clock estimates might not always be feasible (Heath & Moore, 2014). 

 

Bayesian model averaging 

In a Bayesian setting, a model-averaging approach can be used when multiple candidate clock models 

are available (Li & Drummond, 2012). This involves sampling the different clock models in 

proportion to their probability during the Markov chain Monte Carlo simulation. As a result, the 

estimates of rates, divergence times, and other parameters are integrated across the uncertainty in the 

clock model, weighted according to the probabilities of the candidate models. A key advantage of this 

approach is that it accounts for model uncertainty, which can be substantial if many different models 

provide comparable fit to the data. In addition, the candidate clock models can be compared by 

examining their posterior probabilities. The maximum a posteriori model can be chosen as the best-

fitting of the models being considered (Li & Drummond, 2012).  
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The utility of model averaging depends on the suite of candidate models that are available for 

comparison. In analyses of simulated data using the software BEAST (Drummond et al., 2012), the 

clock model used for simulation was usually, but not always, chosen correctly as the maximum a 

posteriori model (Baele et al., 2013; Duchêne et al., 2014a). The performance of this model-selection 

approach was found to be better than that of Bayes factors calculated using the harmonic-mean 

estimator of the marginal likelihood, and comparable to those estimated using path-sampling and 

stepping-stone estimators (see Box 3; Baele et al., 2013). There is a limited range of clock models that 

can be compared using available Bayesian model-averaging methods, but further development of this 

framework is a promising area of work (Heath & Moore, 2014).  

 

Partitioned molecular clocks 

Clock-model selection for multilocus data sets is a complex exercise. Not only does the best-fitting 

clock model need to be identified, but the user must also decide whether or not to assign separate 

clock models to different subsets of the data. When residual effects are present, multiple clock models 

are needed to capture the rate heterogeneity among genes (Thorne & Kishino, 2002). Given the 

number of different ways of partitioning multilocus data sets, however, an exhaustive comparison is 

rarely feasible. As with selecting partitioning schemes for substitution models (Lanfear et al., 2012), a 

heuristic approach needs to be adopted.  

 

One method of data partitioning involves identifying clusters of loci that share similar patterns of 

rate variation among branches. This can be done by using a clustering algorithm to group the genes 

according to some criterion, such as the distances between their inferred trees (dos Reis et al., 2012; 

Duchêne et al., 2014b). In this way, a separate clock model can be applied to clusters of genes that 

share the same patterns of among-lineage rate variation. These clusters might be expected to 

correspond to the biological functions of the genes, but analyses of sequence data from bacterial and 

archaeal taxa have suggested that this is not the case (Wolf et al., 2013).  
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Concluding remarks 

Biologists are faced with a wide choice of molecular-clock methods for estimating evolutionary rates 

and timescales. Accurate inference relies on access to informative sequence data, careful model 

selection, and reliable calibrations. Further development of molecular-clock methods should address 

these three components. In particular, new methods will need to meet the challenges of analysing 

large, genome-scale data sets (Ho, 2014).  

 

With the growing amount of sequence data, the performance of molecular-clock analyses will 

increasingly rely on rigorous model selection and the identification of accurate, informative 

calibrations . Recent work has highlighted the declining marginal benefit in increasing the size of the 

data sets used to estimate evolutionary timescales (dos Reis & Yang, 2013; Rannala & Yang, 2007; 

Yang, 2014; Yang & Rannala, 2006). Even with data sets of moderate size, there is little error in 

estimates of branch lengths and the uncertainty in divergence-time estimates is primarily driven by the 

calibrations (dos Reis & Yang, 2013; Thorne & Kishino, 2002; Xia & Yang, 2011; Yang & Rannala, 

2006). Therefore, molecular estimates of evolutionary rates and timescales will be most substantially 

improved by the continued discovery and description of informative fossils, as well as development of 

methods for incorporating calibrations into the analysis. With careful employment of molecular-clock 

methods and models, estimates of rates and timescales can make an extremely valuable contribution 

to our understanding of the evolutionary process.  
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Box 1. Calibrating molecular clocks 

Molecular clocks need to be calibrated so that they give measurements on an absolute timescale rather 

than providing relative times. In some cases, the speed of the clock is set using previous estimates of 

evolutionary rates. Given that many data sets now comprise a diverse range of genes and taxa, the 

validity of applying such secondary rates is becoming increasingly dubious. Accordingly, most work 

has focused on the implementation and improvement of age calibrations for phylogenetic trees. Such 

calibrations can come from various independent sources, including the fossil record, geological 

evidence, or the ages of the samples being analysed. This calibrating information can be incorporated 

in a number of different ways, of which the most common is to constrain the age of a node in the 

phylogenetic tree (Figure 1). In Bayesian methods, this is usually done by specifying an informative 

prior distribution for the age of the corresponding node (Drummond et al., 2006; Thorne et al., 1998).  

 

Most molecular-clock methods allow multiple calibrations to be implemented throughout the 

tree, enabling temporal information from various sources to be taken into account. Simulation studies 

have demonstrated that calibrations at deeper nodes generally lead to rate and date estimates with 

lower error and higher precision (Duchêne et al., 2014a). Methods for calibrating molecular clocks 

have been reviewed in detail elsewhere (Benton & Donoghue, 2007; Forest, 2009; Heath & Moore, 

2014; Hipsley & Muller, 2014; Ho, 2007; Ho & Phillips, 2009; Parham et al., 2012); here we provide 

a summary of these methods and focus on new approaches.  
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Fossil calibrations 

Calibrations are often based on palaeontological evidence, whereby a minimum constraint on the age 

of a clade is based on the timing of its earliest fossil representative. There has been extensive research 

into the use of fossil data for calibrating molecular clocks (Gandolfo et al., 2008; Parham et al., 2012). 

Most molecular-clock methods use fossil data indirectly, by guiding the user to specify age 

constraints or a prior age distribution for a node in the tree. In the latter case, the purpose of the 

distribution is to describe the presumed relationship between the calibration node and the age of the 

oldest fossil attached to the descendent lineages. The way in which the constraint is implemented, 

including the choice of prior density and its parameters, is often subjective and based on an overall 

interpretation of factors that are difficult to quantify individually (Heath, 2012; Ho & Phillips, 2009; 

Inoue et al., 2010). Various authors have attempted to formalise this process by proposing methods 

for estimating uncertainty, such as by modelling preservation or sampling probabilities (Dornburg et 

al., 2011; Marshall, 2008; Matschiner & Bouckaert, 2014; Nowak et al., 2013; Wilkinson et al., 

2011). An alternative is to use a hierarchical approach in which the calibration priors can be grouped 

into subsets that share the same parameters. For example, Heath (2012) sampled calibrations from a 

mixture of exponential distributions, with the number and assignments of exponential distributions to 

calibration nodes being estimated. This approach shows considerable potential because it obviates the 

need for the user to choose the parameters of the calibration priors (Heath, 2012; Heath & Moore, 

2014).  

 

When the data set comprises a combination of morphological and molecular characters, fossil 

taxa can be included in the analysis. In such cases, the fossil taxa are only represented by 

morphological, but not molecular, characters. The fossil taxa should be assigned non-zero ages so that 

they are not treated as contemporaneous with the extant taxa in the data set (Didier et al., 2012; 

Stadler, 2010). This allows the evolutionary relationships of the fossil taxa to be estimated, while the 

age of each fossil acts to constrain the times of the ancestral nodes in the tree (Pyron, 2011; Ronquist 
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et al., 2012a). The accuracy of this approach depends on the model of morphological evolution and on 

the choice of characters.  

 

In the fossilised birth-death (FBD) model, developed by Heath et al. (2014), calibration of the divergence-time estimates is based on fossil occurrences. The only information needed about these fossils is their age and attachment to internal nodes in the tree. The probabilities of node times are then estimated using a model of speciation and extinction. Notably, the estimates in the FBD model are improved by increasing the amount of fossil data for nodes that already have calibrating information. This is in contrast with the strictly node-based methods described above, in which the age constraint placed on a node is based predominantly or even exclusively on the oldest fossil representative of the descendent clade.  
 

Geological and biogeographic calibrations 

If the phylogenetic tree contains lineage divergences that are thought to be associated with particular 

geological events, the estimated age of each geological event can be used to calibrate the molecular 

clock. These can include any geological events that promote reproductive isolation or produce a 

founder effect, ranging from ancient continental drift to recent island colonisations (Kodandaramaiah, 

2011). However, biogeographic calibrations are often controversial because of the strong assumption 

that genetic divergence is tied to geological events. This practice is susceptible to a range of 

confounding factors, including errors in the estimation of geological ages, the degree of association 

between geological events and genetic divergences, and the impacts of taxon sampling and lineage 

extinction (Heads, 2011; Kodandaramaiah, 2011).  

 

Newer approaches to geological calibrations include tying them to demographic events, rather 

than to genetic divergences. This reduces the impact of the discrepancy between population and 
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genetic divergence, which can be a considerable source of estimation bias (Edwards & Beerli, 2000; 

Ho et al., 2011; Peterson & Masel, 2009). In a study of marine invertebrates, Crandall et al. (2012) 

assumed that the timing of sea-level rise following the Last Glacial Maximum was tied to population 

expansion, rather than to the most recent common ancestor of the sampled individuals. Similar 

analyses using demography-based calibrations will provide further insights into the utility and 

effectiveness of this approach. 

 

Heterochronous sequence data 

In data sets comprising nucleotide or amino acid sequences from ancient specimens or viruses, the 

samples often have distinct ages. If the temporal span of the samples is sufficient to allow the 

accumulation of genetic variation, the ages of the samples can be used for calibration (Drummond et 

al., 2003; Rambaut, 2000). In studies of viruses, sample ages are often known from collection dates, 

patient records, or other forms of medical and historical documentation. In contrast, ancient DNA 

sequences are often obtained from samples of unknown age. These samples can be dated using 

radiometric methods, from the dates of associated remains, or from stratigraphic analysis. Uncertainty 

in sample ages, such as the error in radiocarbon dating, can be incorporated into the analysis (Molak 

et al., 2014). However, accounting for uncertainty in sample ages often has only a small impact on the 

resulting estimates of rates and divergence times (Molak et al., 2013). If the ages of the 

heterochronous sequences are unknown, they can be estimated as part of the molecular-clock analysis 

(Shapiro et al., 2011).  

 

Multiple calibrations 

Most molecular-clock methods allow the use of multiple calibrations. For example, age constraints or 

informative prior distributions can be chosen for several nodes in the tree, or the data set might 

include heterochronous sequences with known ages. The use of multiple calibrations has several 

advantages. The influence of any erroneous calibrations can be overcome by the other calibrations, if 
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the latter are sufficiently informative. Increasing the number of calibrations generally leads to an 

improvement in estimates of rates and divergence times (Conroy & van Tuinen, 2003; Duchêne et al., 

2014a). This is partly because the presence of multiple calibrations reduces the distance of the nodes 

of unknown age from the calibrating nodes (Rutschmann et al., 2007).  

 

Using multiple calibrations brings a number of potential risks. Calibrations vary in their 

reliability, and the impact of including erroneous age constraints might substantially outweigh any 

benefits. Generally, the accuracy of different sources of calibrating information is not well understood 

(Gandolfo et al., 2008; Hipsley & Muller, 2014; Kodandaramaiah, 2011; Sauquet et al., 2012). In 

some Bayesian molecular-clock methods, the prior age distributions specified for individual 

calibrating nodes interact multiplicatively with the prior on node times, leading to marginal priors that 

no longer reflect the temporal information provided by the calibrations (Heled & Drummond, 2012; 

Ho & Phillips, 2009; Kishino et al., 2001; Warnock et al., 2012). This problem can be addressed by 

inspecting the effective prior distributions of node times or by employing methods that use 

conditional constructions of calibration priors (Heled & Drummond, 2012; Yang & Rannala, 2006). 

In any case, the user-specified calibration densities are subject to constraints imposed by the tree 

topology, because the age of each node needs to fall within the interval bounded by its ancestral and 

descendent nodes (Ho & Phillips, 2009; Warnock et al., 2012). 

 

Box 2. Prior distribution of node ages 

In Bayesian molecular-clock analyses, separate prior distributions are specified for the branch-specific 

rates and node times. The priors on branch-specific rates are provided by the clock model. The prior 

distribution of node times can be generated using a stochastic branching or coalescent model, or the 

node times can be assumed to follow a chosen statistical distribution.  
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The simplest model for the prior distribution of node times has the age of the root as the only 

parameter, with an exponential or uniform prior. It is known as the uniform model because the age of 

each node has a uniform prior distribution between the age of its parent node and its oldest descendent 

node (Lepage et al., 2007). This process is repeated in a traversal of the tree from the tips towards the 

root. An alternative is the Dirichlet model. One of its parameters is the age of the root, which can be 

given a gamma or uniform prior distribution, for example. The intervals of node times, as a proportion 

of the total time along a path in the tree (branches connecting an internal node to a tip), follow a 

Dirichlet distribution and are governed by the concentration parameter, α (Kishino et al., 2001). 

When the Dirichlet distribution has an α value of 1, it is equivalent to the uniform model. The 

Dirichlet and uniform models are not explicitly based on biological processes and can be used for data 

sets with any taxonomic scope. They are particularly useful for analyses of data sets comprising a 

mixture of population- and species-level samples. 

 

When the data set comprises sequences from distinct species, the prior distribution of node times 

can be generated using a stochastic branching model based on the speciation process. This can be a 

pure-birth model (Yule, 1924), which is typically parameterised with the probability of speciation 

along a lineage, known as the birth rate. The birth rate is assumed to remain constant through time and 

among lineages. In practice, the Yule model is perhaps inappropriate for most data sets because it 

excludes the possibility of extinction. The birth-death model considers extinction in addition to 

speciation via the death and birth rate parameters, respectively (Nee et al., 1994; Rannala & Yang, 

1996). An extension of this model includes a sampling parameter that allows incomplete taxon 

sampling to be taken into account (Yang & Rannala, 1997). 

 

In analyses of intraspecific data, a coalescent model can be used to generate the prior distribution 

of node times. These models typically assume random sampling from a panmictic population, but 

vary in their description of the population history. The simplest demographic model assumes a 
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constant population size through time, with the size of the population being the only parameter 

(Kingman, 1982). A growing population can be described using the exponential-growth model, in 

which the population size changes through time according to an exponential function (Griffiths & 

Tavaré, 1994). Flexible models that allow the population size to be estimated at different time 

intervals in the tree, such as the Bayesian skyline (Drummond et al., 2005) or skyride (Minin et al., 

2008), can be used when the demographic history is either unknown or is to be treated as a nuisance 

parameter (Ho & Shapiro, 2011). The Bayesian skyline allows abrupt changes in population size, 

whereas the Bayesian skyride assumes a stronger autocorrelation in population size through time. 

 

The choice of prior on node times can have a substantial impact on the estimates of node ages, 

especially when the information content of the data set is low (Lepage et al., 2007; Welch & 

Bromham, 2005). For example, metazoan divergence times estimated by Aris-Brosou and Yang 

(2003) were strongly influenced by the birth-death-process prior used in the analysis (Ho et al., 2005; 

Welch et al., 2005). Selecting the node-time prior can be guided by biological considerations, such as 

the taxonomic level of sampling, or by computing Bayes factors. In any case, investigating the 

sensitivity of the results to the node-time priors is prudent practice (Heath et al., 2012; Stadler & 

Yang, 2013).  

 

Box 3. Computing Bayes factors 

Bayes factors provide a means of model comparison in a Bayesian statistical framework (Jeffreys, 

1935; Jeffreys, 1961). The Bayes factor (BF) comparing Model 1 (M1) against Model 2 (M2) is given 

by: 
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where  is the probability of the data under model Mi. This is also known as the marginal 

likelihood of model Mi. Bayes factors have an intuitive interpretation. In the equation above, the BF 

represents the level of support for M1 relative to M2. If BF > 1, M1 has higher support than M2, 

whereas BF < 1 indicates the reverse. In contrast with some frequentist methods for model selection, 

the candidate models do not need to be nested. For these reasons, Bayes factors have a wide range of 

applications in phylogenetics, including selection of substitution models (Huelsenbeck et al., 2004), 

clock models (Lepage et al., 2007; Linder et al., 2011), and demographic models (Baele et al., 2012). 

However, the use of Bayes factors to compare priors, including clock models and demographic 

models, is an unconventional statistical practice (Yang, 2014). 

 

In most phylogenetic studies, Bayes factors and marginal likelihoods are expressed on a 

logarithmic scale, so that:  

 

 

 

For model selection, a threshold needs to be adopted for the interpretation of Bayes factors. A 

widely accepted standard is that reported by Kass and Raftery (1995), who suggested guidelines for 

interpreting the value of 2log(BF). Values between 0 and 6 indicate positive evidence for model M1, 

values between 6 and 10 indicate strong evidence, and values over 10 indicate decisive evidence. 

When the value of log(BF) is between 0 and 2, the Bayes factor is inconclusive and it is appropriate to 

select the model with fewer parameters. 

 

Calculating marginal likelihoods accurately is crucial for reliable model selection using Bayes 

factors. There are various methods for calculating marginal likelihoods, most of which are 
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computationally intensive. The least computationally demanding approach is to use a harmonic-mean 

estimator, which can use the samples drawn from a Markov chain Monte Carlo simulation (Newton & 

Raftery, 1994; Suchard et al., 2001). The use of this estimator has been deprecated, however, because 

it overestimates the marginal likelihood and tends to favour more complex models (Baele et al., 2012; 

Lartillot & Philippe, 2006; Xie et al., 2011).  

 

More accurate estimates of marginal likelihoods can be obtained using stepping-stone sampling 

and path-sampling techniques (Gelman & Meng, 1998; Lartillot & Philippe, 2006; Xie et al., 2011). 

These methods require Markov chain Monte Carlo samples from a range of power posterior 

distributions, which represent the path between the prior and the posterior distributions. Path sampling 

involves estimating the marginal likelihood for every power posterior sample. In contrast, stepping-

stone sampling estimates the likelihood ratio for a series of power posterior samples. The accuracy of 

these two methods is very similar, but stepping-stone sampling is more computationally efficient 

because it requires fewer samples from the power posterior. Although both of these methods are more 

accurate than the harmonic-mean estimator, they come at the cost of a substantially increased 

computational burden.  
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Table 1. Phylogenetic software for estimating evolutionary rates and timescales from genetic 

sequence data. 
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aModels of rate variation among branches: strict clock (SC), local multi-rate clock (LC), discrete 

multi-rate clock (DC), autocorrelated relaxed clock (ARC), and uncorrelated relaxed clock (URC).  

bMethods either implement calibrations as constraints on node ages (Constraints) or as prior 

distributions on node ages (Priors). All methods are able to implement calibrations at multiple nodes 

in the tree simultaneously. 

cSome methods allow distinct clock models for different loci, equivalent to accounting for residual 

effects (R). Some methods allow different loci to have a different rate, but assume that all loci share 

the same pattern of rate variation among branches. This is equivalent to accounting for gene effects 

(G). All of the listed methods are able to account for lineage effects through the use of models of rate 

variation among branches.  
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Figure captions 

 

Figure 1. Different approaches for representing uncertainty in calibrations in a phylogenetic tree. 

Calibrations at internal nodes (red), from top to bottom: normal distribution, lognormal distribution, 

exponential distribution (Drummond et al., 2006), uniform distribution with hard minimum and soft 

maximum bounds (Yang & Rannala, 2006), uniform distribution with hard minimum and maximum 

bounds, point value, and fossilised birth-death model (Heath et al., 2014). F1 and F2 represent fossil 

occurrences of known age. Calibrations at terminal nodes (blue), from top to bottom: empirical 

calibrated radiocarbon sampler (Molak et al., 2014), normal distribution, uniform distribution with 

hard minimum and maximum bounds, and point value.  

 

Figure 2. Phylogenetic trees showing differences among models of rate variation. Panel (a) shows a 

chronogram with branch lengths measured in time units. The scale bar indicates 1 time unit. The 

remaining panels show phylograms with branch lengths generated under a range of different clock 

models: (b) strict clock, with a constant rate among branches; (c) local multi-rate clock, with a distinct 

rate in each of three groups of branches; (d) discrete multi-rate clock, with a small number of branch-

specific rates distributed throughout the tree; (e) autocorrelated relaxed clock, with a distinct rate 

along each branch that is correlated with the rate along its parent branch; and (f) uncorrelated relaxed 
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clock, with a distinct rate along each branch drawn from a chosen probability distribution. In panels 

(b) to (f), scale bars represent 0.01 substitutions per site.  

 

Figure 3. Clock-model schemes for dealing with different patterns of rate variation in a four-gene 

data set. (a) When only gene effects are present, a strict-clock model can be used, with a different rate 

(μi) for each gene. (b) When gene and lineage effects are both present, a relaxed-clock model can be 

used, with the branch-specific rates being scaled differently for each gene. The ratio of rates along 

different branches are identical across genes. (c) When gene-by-lineage (residual) effects are present, 

separate relaxed-clock models should be applied to clusters of genes that share the same pattern of 

among-lineage rate variation. Each gene also has a different ancestral rate (autocorrelated relaxed 

clock) or mean rate (uncorrelated relaxed clock).  
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