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Time-calibrated species phylogenies are critical for addressing
a wide range of questions in evolutionary biology, such as those
that elucidate historical biogeography or uncover patterns of
coevolution and diversification. Because molecular sequence data
are not informative on absolute time, external data—most com-
monly, fossil age estimates—are required to calibrate estimates of
species divergence dates. For Bayesian divergence time methods,
the common practice for calibration using fossil information
involves placing arbitrarily chosen parametric distributions on in-
ternal nodes, often disregarding most of the information in the
fossil record. We introduce the “fossilized birth–death” (FBD) pro-
cess—a model for calibrating divergence time estimates in a Bayes-
ian framework, explicitly acknowledging that extant species and
fossils are part of the same macroevolutionary process. Under this
model, absolute node age estimates are calibrated by a single
diversification model and arbitrary calibration densities are not
necessary. Moreover, the FBD model allows for inclusion of all
available fossils. We performed analyses of simulated data and
show that node age estimation under the FBD model results in
robust and accurate estimates of species divergence times with
realistic measures of statistical uncertainty, overcoming major lim-
itations of standard divergence time estimation methods. We used
this model to estimate the speciation times for a dataset com-
posed of all living bears, indicating that the genus Ursus diversi-
fied in the Late Miocene to Middle Pliocene.
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A phylogenetic analysis of species has two goals: to infer the
evolutionary relationships and the amount of divergence

among species. Preferably, divergence is estimated in units pro-
portional to time, thus revealing the times at which speciation
events occurred. Once orthologous DNA sequences from the
species have been aligned, both goals can be accomplished by
assuming that nucleotide substitutions occur at the same rate in
all lineages [the “molecular clock” assumption (1)] and that the
time of at least one speciation event on the tree is known, i.e.,
one speciation event acts to “calibrate” the substitution rate.
The goal of reconstructing rooted, time-calibrated phylogenies

is complicated by substitution rates changing over the tree and by
the difficulty of determining the date of any speciation event.
Substitution rate variation among lineages is pervasive and has
been accommodated in several ways. The most widely used
method to account for rate heterogeneity is to assign an in-
dependent parameter to each branch of the tree. Branch lengths,
then, are the product of substitution rate and time, and usually
measured in units of expected number of substitutions per site.
This solution allows estimation of the tree topology—which is
informative about interspecies relationships—but does not at-
tempt to estimate the rate and time separately. Thus, under this
“unconstrained” parameterization, molecular sequence data al-
low inference of phylogenetic relationships and genetic distances
among species, but the timing of speciation events is confounded
in the branch-length parameter (2–4). Under a “relaxed-clock”

model, substitution rates change over the tree in a constrained
manner, thus separating the rate and time parameters associated
with each branch and allowing inference of lineage divergence
times. A considerable amount of effort has been directed at
modeling lineage-specific substitution rate variation, with many
different relaxed-clock models described in the literature (5–19).
When such models are coupled with a model on the distribution
of speciation events over time [e.g., the Yule model (20) or birth–
death process (21)], molecular sequence data can inform the
relative rates and node ages in a phylogenetic analysis.
Estimates of branch lengths in units of absolute time (e.g.,

millions of years) are required for studies investigating com-
parative or biogeographical questions (e.g., refs. 22, 23). How-
ever, because commonly used diversification priors are imprecise
on node ages, external information is required to infer the ab-
solute timing of speciation events. Typically, a rooted time tree is
calibrated by constraining the ages of a set of internal nodes. Age
constraints may be derived from several sources, but the most
common and reliable source of calibration information is the
fossil record (24, 25). Despite the prevalence of these data in
divergence time analyses, the problem of properly calibrating
a phylogenetic tree has received less consideration than the
problem of accommodating rate variation. Moreover, various
factors may lead to substantial errors in parameter estimates
(26–31). When estimating node ages, a calibration node must be
identified for each fossil. For a given fossil, the calibration node
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is the node in the extant species tree that represents the most
recent common ancestor (MRCA) of the fossil and a set of ex-
tant species. Based on the fossil, the calibration node’s age is
estimated on an absolute timescale. Thus, fossil data typically
can provide valid minimum-age constraints only on these nodes
(24, 27), and erroneous conclusions may result if the calibration
node is not specified properly (26).
Bayesian inference methods are well adapted to accommo-

dating uncertainty in calibration times by assuming that the
age of the calibrated node is a random variable drawn from
some parametric probability distribution (10, 14, 29, 31–35).
Although this Bayesian approach properly propagates un-
certainty in the calibration times through the analysis (reflected
in the credible intervals on uncalibrated node ages), two prob-
lems remain unresolved.
First, these approaches, as they commonly are applied, induce

a probability distribution on the age of each calibrated node that
comes from both the node-specific calibration prior and the tree-
wide prior on node ages, leading to an incoherence in the model
of branching times on the tree (35, 36). Typically, a birth–death
process of cladogenesis is considered as the generating model for
the tree and speciation times (20, 21, 37–40), serving as the tree-
wide prior distribution on branch times in a Bayesian analysis.
The speciation events acting as calibrations then are considered
to be drawn from an additional, unrelated probability distribu-
tion intended to model uncertainty in the calibration time. This
procedure results in overlaying two prior distributions for a cali-
bration node: one from the tree prior and one from the cali-
bration density (35, 41). Importantly, this incoherence is avoided
by partitioning the nodes and applying a birth–death process to
uncalibrated nodes conditioned on the calibrated nodes (32),
although many divergence time methods do not use this ap-
proach. Nevertheless, a single model that acts as a prior on the
speciation times for both calibrated and uncalibrated nodes is
a better representation of the lineage diversification process and
preferable as a prior on branching times when using fossil data.
Second, the probability distributions used to model uncer-

tainty in calibration times are poorly motivated. The standard
practice in Bayesian divergence time methods is to model un-
certainty in calibrated node ages by using simple probability
distributions, such as the uniform, log-normal, gamma, or ex-
ponential distributions (29). When offset by a minimum age,
these “calibration densities” (35) simply seek to characterize the
age of the node with respect to its descendant fossil. However,
the selection and parameterization of calibration priors rarely
are informed by any biological process or knowledge of the fossil
record (except see refs. 42–44). A probability model that acts as
a fossil calibration prior should have parameters relevant to the
preservation history of the group, such as the rate at which fossils
occur in the rock record, a task that likely is difficult for most
groups without an abundant fossil record (43, 45). Consequently,
most biologists are faced with the challenge of choosing and
parameterizing calibration densities without an explicit way to
describe their prior knowledge about the calibration time. Thus,
calibration priors often are specified based on arbitrary criteria
or ad hoc validation methods (46), and ultimately, this may lead
to arbitrary or ad hoc estimates of divergence times.
We provide an alternative method for calibrating phylogenies

with fossils. Because fossils and molecular sequences from extant
species are different observations of the same diversification
process, we use an explicit speciation–extinction–fossilization
model to describe the distribution of speciation times and re-
covered fossils. This model—the fossilized birth–death (FBD)
process—acts as a prior for divergence time dating. The
parameters of the model—the speciation rate, extinction rate,
fossil recovery rate, and proportion of sampled extant species—
interact to inform the amount of uncertainty for every speciation
event on the tree. These four parameters are the only quantities

requiring prior assumptions, compared with assuming separate
calibration densities for each fossil. Analyses of simulated data
under the FBD model result in reliable estimates of absolute
divergence times with realistic measures of statistical uncertainty.
Moreover, node age estimates are robust to several biased
sampling strategies of fossils and extant species—strategies that
may be common practice or artifacts of fossil preservation but
heavily violate assumptions of the model.

Results and Discussion
A Unified Model for Fossil and Extant Species Data. The process of
diversification under the FBD model (first introduced in refs. 47,
48) starts with a single lineage at time x0 (stem age) before the
present. The model assumes a constant speciation rate λ and
a constant extinction rate μ. Recovered fossils appear along
lineages of the complete species tree according to a Poisson
process with parameter ψ. Finally, each extant species is sampled
with probability ρ. This process gives rise to complete FBD trees
with extinct and extant tips and fossil occurrences along the
branches. Deleting all lineages without sampled extant or fossil
descendants leads to the resolved FBD tree (Fig. 1A), in which
the precise relationships of the fossil and extant lineages are
depicted. Pruning all lineages without sampled extant descend-
ants leads to the reconstructed phylogeny, i.e., trees representing
only extant species relationships (Fig. 1A, black). We denote the
age of the ith internal node in the reconstructed phylogeny with xi
(for i ∈ 1, . . ., n − 1).
Using the resolved FBD tree requires explicit representation

of the phylogenetic relationships of both extant and fossil taxa
(Fig. 1A). Accordingly, methods based on the resolved FBD tree
are appropriate for describing the distribution of speciation
times and tree topologies when used in “tip-dating” approaches,
in which sequence data—either molecular or discrete morpho-
logical characters—are available for both extant and extinct taxa
(49–54). However, suitable data matrices of discrete morpho-
logical characters for both living and fossil taxa are unavailable
for many groups in the tree of life. Instead, biologists may have
access to the times of fossil occurrences and their taxonomic
identification based on only a few diagnostic characters. In these
cases, fossils still are useful for calibrating a molecular phylogeny
of extant species provided that calibration nodes are identified
correctly. Conventional calibration approaches for Bayesian di-
vergence time estimation require that prior densities be param-
eterized for each calibrated node (29), a task that presents
a challenge for most biologists performing these analyses.
The FBD model overcomes several of the major limitations

associated with standard node calibration for phylogenetic datasets
unsuitable for tip dating by allowing ambiguity in the precise
phylogenetic placement of fossils while still considering them
part of a unified macroevolutionary process. We introduce
unresolved FBD trees, an alternative construction of the fossil/
extant lineage topology (Fig. 1B). Like tip-dating or using re-
solved FBD trees, divergence time estimation of the unresolved
FBD tree allows for inclusion of all reliable fossil taxa available
for the group of interest and eliminates the need for ad hoc
calibration prior densities without requiring combined character
data for both modern and fossil species.
We obtain an unresolved FBD tree from a resolved FBD tree

by ignoring the exact placement of fossils in the sampled tree.
This is accomplished by removing all fossils from the resolved
FBD tree, keeping the attachment time to the resolved FBD tree
and a calibration node for each fossil (Fig. 1B) while ignoring the
attachment lineage. The age of fossil f is denoted with yf, and
the attachment time of f is zf. The calibration node is defined as the
branching event in the reconstructed tree that is the most recent
known ancestor of the fossil and a set of extant species (node C
in Fig. 1). For any fossil, if yf < zf, then fossil f attaches to the
resolved FBD tree by way of speciation and induces an un-
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observed lineage in the unresolved FBD tree. Foote (55) de-
scribed models to assess the probability of ancestor–descendant
pairs in the fossil record; in the unresolved FBD tree, this pattern
is possible when yf = zf, such that fossil f lies directly on a branch
and is an ancestor of sampled extant or fossil taxa (Fig. 1B).
In summary, the unresolved FBD tree contains all branching

and sampling time information of the resolved FBD tree; how-
ever, the precise attachment lineages of the fossils are not specified.
Thus, the precise topology of the resolved FBD tree is ignored
when calculating the probability of the unresolved FBD tree by
summing over the probabilities of all possible resolved FBD trees
that can induce a given unresolved FBD tree (Methods; Eq. 1).
Importantly, because we do not know whether a given fossil
is the direct ancestor of a lineage in the resolved FBD tree or
whether it lies on an unobserved lineage, we average over all
possible resolved FBD tree realizations using numerical meth-
ods. To use the FBD model as a prior for divergence time dating,
we calculate the probability density for obtaining a particular
unresolved FBD tree, conditioning on the root (crown) age of
the tree, x1 (Eq. 1).
The unresolved FBD tree probability is central to our Bayesian

divergence time estimation method implemented in the program
DPPDiv (https://github.com/trayc7/FDPPDIV) (19, 31, 56). This
approach estimates unresolved FBD trees—specifically, divergence
times—from molecular sequence data for extant species together
with fossil occurrence times. The user provides only the sequence
data, extant tree topology, fossil ages, and calibration nodes for
each fossil. Thus, this approach is suitable for analyzing a wide
variety of datasets, provided that at least one fossil taxon is
known for the group. We use Markov chain Monte Carlo (MCMC)
to approximate the posterior distribution of unresolved FBD trees
conditional on the extant species tree topology and calibration
node assignments for each fossil specimen. Note that like cali-
bration density methods, divergence time estimation under the
unresolved construction of the FBD model requires that the
fossil be assigned correctly to a calibration node in the extant
tree that is truly older than the fossil age. However, in contrast to
calibration density approaches that require the user to choose
and parameterize a prior density for each calibrated node, the only

input assumptions required when applying the FBD model are
prior information on the FBD model parameters (λ, μ, ψ, ρ, x1),
parameters of the GTR + Γ substitution model (e.g., general time
reversible model with gamma-distributed rate heterogeneity), and
parameters of the model of branch rate variation (i.e., relaxed-
clock model). We used both simulated and empirical data to
evaluate the accuracy, precision, and robustness of divergence time
estimation under the FBD model. Our simulation results show that
integrating fossil information into the diversification model yields
accurate inferences of absolute node ages. Furthermore, the FBD
model provides coherent measures of statistical uncertainty that
lead to more straightforward interpretation compared with stan-
dard practices for node calibration.

Analyses of Simulated Data.We generated tree topologies and sets
of fossils under a forward-time simulation of the FBD model.
Our results are focused on a set of simulations with the following
conditions: r = 0.5, d = 0.01, and ψ = 0.1, where r is the turnover
rate such that r = μ/λ, the diversification rate is d = λ − μ, and ψ
is the Poisson rate of fossilization events (seeMethods for details;
SI Appendix, Fig. S1 shows a single simulation replicate). Each of
our 100 simulation replicates comprised a tree topology for 25
extant species with corresponding sequence data (GTR + Γ,
strict molecular clock), and a complete set of fossil ages. Each
fossil is associated with a calibration node representing the most
recent branching event in the reconstructed tree ancestral to the
fossil. We then subsampled each set of complete fossils, so that
only a percentage, ω, of the fossils were present. We produced
four different fossil subsets under different values of ω: 5%, 10%,
25%, and 50% (henceforth we use the notation ωP to indicate
ω = P%). Additionally, for sets of ω10 fossils (across 100 repli-
cates: median = 17 fossils), we created a set of ‘calibration fos-
sils’ (ωcal10), where, for each calibrated node, only the oldest fossils
were retained (median = 9 fossils). We created the ωcal10 fossils to
compare node calibration under the FBD model with commonly
used calibration density approaches which do not consider all
available fossils.
We estimated absolute node ages for trees of 25 extant species

under the FBD model using each set of fossils: ω5, ω10, ω25, ω50,

A B

TimeTime
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Fig. 1. Representations of fossils on (A) a resolved FBD tree and (B) an unresolved FBD tree. (A) The phylogeny of four extant species and two sampled fossils,
in which the true phylogenetic relationships are known [the resolved FBD tree described in Stadler (47)]. Each fossil has observed age y and attachment time z,
which is the point at which the fossil links to the tree. Fossil 1 (red), the youngest fossil specimen, is descended from node C via speciation at time z1 and occurs
on an extinct lineage, such that y1 < z1. Fossil 2 (blue) lies directly on a lineage in the extant tree; therefore, y2 = z2 and fossil 2 is the ancestor of a sampled,
present-day taxon. (B) The unresolved FBD tree on which the precise phylogenetic relationships of the fossils are ignored and the two fossil specimens are
used to calibrate the extant tree. Both fossils calibrate a single internal node, C, based on prior knowledge that fossils 1 and 2 are descendants of the cal-
ibration node. All other nodes are uncalibrated. Because fossil 1 (red) attaches to the extant tree via speciation, where y1 < z1, the unobserved speciation
event is assumed to occur at any lineage that is descended from C and that intersects with z1 (small red ●). The attachment time of fossil 2 (blue) is equal to
the age of the fossil; thus, fossil 2 represents a direct ancestor of any lineage descended from node C that intersects with time z2 (small blue ●), including any
“ghost” lineages leading to other fossil taxa (e.g., the dotted red line leading to fossil 1).
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and ωcal10. For comparison, we estimated node ages under three
different calibration-density approaches using the ωcal10 set of
fossils, each assuming an exponential calibration density (see
Methods). The fixed-scaled calibration density method scaled the
expected value of each exponential prior density based on the
age of the calibrating fossil. Another calibration density was
created where the expected age of the calibrated node was equal
to the true age (fixed-true). The third calibration-density ap-
proach applied a hyperprior to the rate parameters of exponential
distributions, such that the nodes are calibrated by a mixture of
exponentials (31). The fixed-true calibration density is expected
to perform well and represent an ideal prior density parame-
terization. The hierarchical, hyperprior calibration density ap-
proach has been evaluated using simulated data and yields
accurate estimates of node ages (31). The fixed-scaled approach
treats the fossil calibration densities in an arbitrary fashion that
may be similar to the strategies used to parameterize these priors
in practice. We selected a scale value that can result in overly
informative calibration densities for some nodes and diffuse
densities for others. For each analysis, we estimated absolute
node ages in the program DPPDiv (19, 31, 56), conditioning on
the true tree topology and assuming a GTR+Γ model of se-
quence evolution and a strict molecular clock (true models). We
chose to simulate and estimate data under a single-rate, strict
clock model to evaluate the FBD model while reducing the
uncertainty from the branch rate prior.
We compared the node age estimates under the FBD model

with the three calibration density analyses (fixed scaled, fixed
true, and hyperprior). Our results show that estimates of abso-
lute node ages are more reliable under the FBD model relative
to calibration density approaches with acceptable cost regarding
precision. Fig. 2A shows the coverage probabilities for node age
estimates under the FBD model, using both the ω10 and ωcal10
sets of fossils and for the calibration density analyses, using only
the ωcal10 fossils. The coverage probability (CP) is the proportion
of nodes for which the true value falls within the 95% credible
interval (95% CI). When calculated across all nodes, the CP for
ages estimated under the FBD model was 0.96 for the ω10 fossils
and 0.97 for the ωcal10 fossils, indicating robust inference under
the FBD process (SI Appendix, Table S1). On average, the more
reliable calibration density approaches had high coverage using

the ωcal10 fossils, with CP = 0.93 under the hyperprior calibrations
and CP = 0.904 when the expectation of the calibration density
was equal to the true calibration node age (fixed true). By contrast,
the calibration densities parameterized based on the magnitudes
of fossil ages (fixed scaled) had relatively poor coverage: CP =
0.68. In Fig. 2A, we show CP as a function of the true node age
by creating bins of 150 nodes and computing the CP for each bin.
The node age estimates under the FBD model show consistently
high CPs for both the ω10 and ωcal10 sets of fossils. In comparison,
hyperprior and fixed-true calibration density analyses show slightly
reduced CPs for older nodes, and the fixed-scaled calibration den-
sities have very low CPs as node age increases.
Fig. 2B illustrates the precision of divergence time estimates

by depicting the average 95% CI width for increasing node age.
These results show that estimates under the FBD model are less
precise (larger 95% CIs) relative to the calibration density methods.
Therefore, inference under the FBD model yields conservative
estimates of node ages, with high CPs combined with large 95%
CIs. In contrast, the precision of node-age estimates under cali-
bration density methods is driven primarily by the variance of cal-
ibration priors (4). Importantly, however, the average widths of the
95% CIs are smaller with the ω10 set of fossils compared with the
reduced set of calibration fossils, ωcal10 (Fig. 2B). Thus, as more
fossils are added, precision under the FBD model increases.
We investigated the effect of different levels of fossil sampling

under the FBD model. Fig. 3 shows the results for node age
estimation for different values of ω: 5%, 10%, 25%, and 50%.
Overall, we do not observe large changes to the coverage of esti-
mates using different sets of fossils, with CPs remaining consistently
high (Fig. 3A). However, when we examine the precision of node
age estimation under the FBD model, we find that as the density
of sampled fossils increases, the precision of divergence time
estimates also increases (Fig. 3B).
Our simulation results make a strong case for node age cali-

bration under the FBD model. Furthermore, these patterns—
high CPs, with increased fossil sampling leading to increased
precision—are consistent under different simulation conditions.
In particular, we focused on varying the turnover rate, r = μ/λ,
leaving the Poisson rate of fossilization at ψ = 0.1 while changing
the diversification rate, d = λ − μ, to ensure that the expected
root age was approximately equal to 200 (varying d changes the
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Fig. 2. The results for 100 replicate trees simulated under the FBD model with μ/λ = 0.5, λ − μ = 0.01. Node age estimates are summarized for analyses under
the FBD model by using all available fossils sampled randomly (10%; ω10) from the total number of simulated fossils (●). These results are compared with
divergence time estimates on the set of calibration fossils (ωcal10) under the FBD model ( ), with a hyperprior on calibration density parameters (×), with
a fixed calibration density where the expected value is equal to the true node age (□), and for a fixed calibration density scaled based on the age of the fossil
(△). Both the coverage probability and precision (95% CI width) are shown as a function of the true node age (log scale), where the nodes were binned so
that each bin contained 150 nodes and the statistics were computed within each bin. (A) The coverage probability is the proportion of nodes in which the true
value falls within the 95% CI. (B) The average size of the 95% CIs for each bin was computed to evaluate precision.
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timescale of trees generated under a given value of r). In SI
Appendix, Figs. S2 and S3 and Table S1, the results for r = 0.1
and r = 0.9 exhibit patterns similar to those shown in Figs. 2 and 3,
with high coverage across all estimates (SI Appendix, Table S1).
Much like conventional calibration approaches, estimates of

absolute node ages under the FBD model are informed by the
distribution, sampling, and phylogenetic placement of fossils.
However, unlike calibration density methods, inference is im-
proved as additional fossils are applied to already-calibrated
nodes. The FBD model also is robust to explicit violation of
model assumptions concerning sampling (namely, biased fossil
sampling and biased extant species sampling do not bias the
divergence time estimates for the investigated cases explored in
detail in SI Appendix, section S.3.2), provided that the fossils are
placed correctly and cover a wide range of node ages. Funda-
mentally, our results highlight the importance of thorough fossil
sampling for robust and accurate node age estimation.

Analysis of Biological Data. We assembled a phylogenetic dataset
of all living bears (Ursidae) plus two outgroup species (Canis
lupus and Phoca largha). The sequence data for the complete
mitochondrial genomes (mtDNA) and the nuclear interphoto-
receptor retinoid-binding protein gene (irbp) were downloaded
from GenBank (SI Appendix, Table S2) and aligned using MAFFT
(57). Preliminary analysis of these data using MrBayes v3.2 (58)
yielded the same topology (for the overlapping set of taxa) reported
in two recent studies (59, 60); we then conditioned our divergence
time analyses on this topology.
To estimate absolute speciation times, we compiled a set of

fossil ages from the literature (SI Appendix, Table S3). This set of
fossils included five fossils belonging to the family Canidae
(assigned to calibrate the root), five fossils classified as Pinni-
pedimorpha (assigned to date the MRCA of P. largha and
Ursidae), and 14 fossils in the family Ursidae. Information re-
garding the phylogenetic placement of the ursid fossils was based
on phylogenetic analyses of morphological data (61) as well as
analyses of mtDNA for extinct Pleistocene subfossils (59). With
these data, we estimated divergence times under the FBD model
using five stem-fossil ursids, six fossils in the subfamily Ailur-
opodinae (pandas and relatives), the giant short-faced bear
(Arctodus; Pleistocene), and two fossil representatives of the
genus Ursus: the Pliocene U. abstrusus fossil and the Pleistocene
cave bear subfossil U. spelaeus (SI Appendix, Table S3). The ages
of most fossils are imprecise and therefore represented in the

literature as age ranges. Because the FBD model assumes that the
fossil is associated with a single point in time, we then sampled
the age for each fossil from a uniform distribution of its given
range (SI Appendix, Table S3). Given sufficient fossil sampling,
this approach is intended to approximate random recovery. It
would be preferable, however, to treat the ages of fossils as random
variables by placing prior densities on fossil occurrence times con-
ditional on their estimated age ranges, a feature planned for future
implementations of the FBD model.
Using DPPDiv, we estimated speciation times in calendar time

units for all living bears, as well as deep nodes in the caniform
tree. We used a GTR+Γ model of sequence evolution and ap-
plied a relaxed-clock model to allow substitution rates to vary
across the tree. The relaxed-clock model we used assumes that
lineage-specific substitution rates are distributed according to
a Dirichlet process prior (DPP) such that branches fall into
distinct rate categories, yet the number of categories and the
assignment of branches to those categories are random vari-
ables (19). For the FBD model, we assumed putatively non-
informative, uniform priors on all rate parameters. Additionally,
because our simulations demonstrated that node age estimation
is robust to extant species sampling, we specified ρ = 1. We
ran three independent chains, each for 20 million iterations.
We used the program Tracer (62) to verify that the three in-
dependent runs converged on the same stationary distribution
for all parameters. Furthermore, we confirmed that the sequence
data were informative on branch rates and node times by com-
paring the MCMC samples from the three different runs to
samples under the prior (i.e., without sequence data).
We used tools in the Python library DendroPy (63) to sum-

marize the divergence times sampled by MCMC from the three
independent runs. The divergence times of all living bears and
occurrence times of calibrating fossils are summarized in Fig. 4.
On average, the node ages estimated under the FBD model are
consistent with the ages estimated by Krause et al. (59), with
overlapping 95% CIs for all common nodes (SI Appendix, Fig.
S.10), suggesting the radiation of the genus Ursus occurred in the
late Miocene to mid Pliocene (Fig. 4). In contrast, dos Reis et al.
(60) uncovered much older ages for all nodes except for the node
representing the MRCA of Canidae and Ursidae (the root in
Fig. 4). Their results indicate a much earlier origin of crown
ursids, with much of the diversification of present-day Ursus
occurring in the mid- to late Miocene. Our analyses were most
similar to those of Krause et al. (59), who estimated divergence
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times using mitochondrial genomes under a global molecular
clock. This gene region dominated our alignment, and analyses
under the DPP model indicate low among-lineage substitution
rate variation with a median of two rate categories (95% CI =
1–4 rate categories). Furthermore, although they used calibra-
tion densities, the common fossils, U. abstrusus and Parictis
montanus, between our study and that of Krause et al. (59) ap-
pear to strongly influence absolute node ages. In contrast, dos
Reis et al. (60) estimated divergence times for 274 mammals by
using a two-step approach in which they first used nuclear
genomes to estimate the node ages for 36 species, then used the
posterior estimates to inform analyses of 12 mitochondrial pro-
tein genes for all 274 species. Their analysis of the 36-taxon tree
included only two carnivores, Canis familiaris and Felis catus;
thus, the age estimates of the bears in the 274-species tree were
uncalibrated yet informed by the ages of all other nodes in the
mammal tree.
The dissimilar divergence time estimates resulting from dis-

tinctly different Bayesian methods and datasets reveal that the
speciation times within the caniforms may still be an open ques-
tion. Moreover, elucidating the time-calibrated phylogeny of this
group calls for a more comprehensive approach that includes
more species and sequence data (as in ref. 60) in conjunction
with a mechanistic diversification model that allows for inclusion
of the rich fossil history of the group.

Conclusions
By modeling extant species data and fossil data as outcomes
of the same macroevolutionary process, we provide a coherent
framework for calibrating phylogenies. In particular, the FBD
model integrates fossil information into the lineage-based diver-
sification process, overcoming many of the limitations of calibra-
tion density methods. Standard calibration density approaches
using fossils have inherent flaws that may lead to biased esti-
mates of node ages and measures of uncertainty, particularly
when applied using fixed parameters (31). Fundamentally, the

prior densities used to calibrate nodes are not derived from any
underlying biological process but instead are intended to char-
acterize the biologist’s uncertainty in the age of the calibrated
node with respect to its oldest descendant fossil. As a result,
estimates of absolute speciation times are driven by the choice
and parameterization of these calibration densities. The FBD
model considers calibrating fossils and extant species as part of
a unified diversification process and provides a more mechanistic
model for lineage divergence times.
Our simulations show that estimates under the FBD model

have greater coverage compared with the most robust calibration
approaches. This result holds even compared with estimates
using calibration densities centered on the true value (an ideal
but unrealistic scenario). In particular, the FBD model, assuming
constant speciation, extinction, and fossilization rates, also pro-
vides reliable estimates when its assumptions are violated in the
data, namely biased sampling of fossils or extant species—sce-
narios that probably are very common. Importantly, because
increasing the number of calibrating fossils results in a corre-
sponding increase in the precision of node age estimates, the
FBD model is better at capturing statistical uncertainty in the
timing of speciation events. By contrast, the precision of node
age estimates under calibration density approaches is controlled
entirely by the precision of the prior distributions on calibrated
nodes, particularly in the case of fixed calibration densities. Thus,
the FBD model eliminates one of the greatest challenges imposed
on biologists applying Bayesian divergence time methods: choosing
and parameterizing calibration densities for multiple nodes.
Phylogenetic analysis under a unified model of diversification

uses all the fossils available for a group. This feature represents
another significant advantage over traditional approaches that
condense all the fossil information associated with a given node
to a single minimum age estimate. Our results highlight the im-
portance of thorough fossil sampling; therefore, every reliably
identified and dated fossil species is useful and may improve esti-
mation of both node ages and parameters of the diversification
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Fig. 4. The divergence times of extant bears and two caniform out-groups estimated under the FBD model. The branch lengths are in proportion to the mean
branch time in millions of years. Horizontal node bars represent the 95% CI for node ages. In each labeled box, the ovals indicate the fossil occurrence times. The
fossils in the family Ursidae are all indicated with black ovals, whereas the out-group fossils are shaded light gray. Ursus (including Melursus and Helarctos)
species include the sloth bear, brown bear, polar bear, sun bear, American black bear, and Asian black bear. (Silhouette images available at http://phylopic.org/.)

E2962 | www.pnas.org/cgi/doi/10.1073/pnas.1319091111 Heath et al.

http://phylopic.org/
www.pnas.org/cgi/doi/10.1073/pnas.1319091111


model. In fact, inclusion of fossil lineages in macroevolutionary
studies leads to more accurate inferences of patterns of specia-
tion and extinction (64) and rates of phenotypic trait evolution
(65). This factor underscores the importance of carefully curated
and analyzed paleontological collections, thus motivating col-
laboration with experts on extinct organisms and critical assess-
ment of fossil specimens (66). Moreover, comprehensive models
such as the FBD have the potential to address interesting
questions about diversity through time and harness the wealth of
information available in online databases such as the Paleobiology
Database (http://paleodb.org).
Alternative sources of calibrating information often are ap-

plied to date species phylogenies, particularly when fossil in-
formation is unavailable. Therefore, it is important to note that
the FBD model is explicitly for fossil calibration. Nonfossil cal-
ibration times typically are derived from biogeographical dates
or node age estimates from previous studies (e.g., secondary
calibrations). Thus, the FBD model is not an appropriate prior
for calibration with these data, and calibration density approaches
still are necessary. For these analyses, hierarchical calibration
models (31) and methods that condition on node calibrations
(32, 35, 41) are recommended.
The FBD model offers a rich basis for the development of

complex, biologically informed models of macroevolution that
incorporate both modern and fossil species. Improving the in-
tegration of fossil data with extant-species data in a phylogenetic
framework is an important step toward enhancing our under-
standing of evolution and biodiversity. As morphological data-
sets uniting fossil and modern species become available, methods
based on the FBD model will be necessary to answer macro-
evolutionary questions in a phylogenetic context.
For the purpose of divergence time dating, we can view the

constant rates of speciation, extinction, and fossilization in the
FBD model as nuisance parameters over which the MCMC
integrates out, and our simulated datasets with biased sampling
still returned reliable divergence time estimates. However, when
going beyond phylogenetic reconstruction, and actually inferring
the macroevolutionary dynamics (i.e., inferring the variation in
speciation, extinction, and fossilization), we must model rate
variation explicitly. In fact, modifications of the FBD model that
accommodate variation in diversification and sampling parame-
ters already are useful for analysis of infectious disease data (53,
54, 67, 68). The phylogenetic patterns of rapidly evolving viruses
modeled by these processes are analogous to macroevolutionary
patterns of lineage diversification. Mechanistic diversification
models that account for biological factors and properties of the
fossil and geologic records may provide a better understanding of
lineage diversification across the tree of life.

Methods
The Probability of an FBD Tree. We assume an FBD process is a model of
speciation, extinction, and fossilization that gives rise to extant and extinct
species and fossils. This process starts with one species at time x0 in the past.
At all time points, each species speciates with rate λ and goes extinct with
rate μ. At speciation, we arbitrarily assign one species descendant the label
“right” and one descendant the label “left” to distinguish between the two
lineages. This assignment gives rise to oriented trees, objects that are very
convenient for calculating tree likelihoods (69). Observed fossils are pro-
duced along lineages with rate ψ (i.e., fossilization plus observation is
a Poisson process). Extant species are sampled from all species with proba-
bility ρ. This model gives rise to complete FBD trees, i.e., trees on the sam-
pled and nonsampled extant species, the fossils, and the extinct species
lineages. Pruning all unsampled extinct and extant lineages from the com-
plete tree yields the sampled, resolved FBD tree. Stadler (47) introduced the
FBD model and provided the details for calculating the probability of a re-
solved FBD tree. Note that pruning the tree further by removing all lineages
without sampled extant species descendants yields the reconstructed tree
introduced in Nee et al. (70).

A resolved FBD tree makes the phylogenetic relationships of the fossils
and sampled extant species explicit. However, these relationships are quite

uncertain for many fossil specimens; thus, we introduce the unresolved FBD
tree. In the unresolved FBD tree, the precise phylogenetic topology relating
any fossil f to the resolved extant phylogeny is not specified; only the fossil’s
calibration node, its age yf, and the time zf at which the fossil attaches to the
tree are considered (Fig. 1B). For the purposes of estimating species di-
vergence times using fossils, we condition the process on the crown (root)
age of the clade x1 instead of the stem age x0 (SI Appendix, section S.1.1).

For our FBD calibration method, we calculate the probability of an un-
resolved FBD tree T : f[T jλ, μ, ψ, ρ, x1], where the probability of the topology,
internal node ages, and fossil attachment times (summarized in T ) for
n extant species and m calibrating fossils is conditional on the hyper-
parameters of the FBD model (λ, μ, ψ, ρ) and the age of the root node (x1). To
state f[T jλ, μ, ψ, ρ, x1], we define additional notation (SI Appendix, Table S5).
Let V be the set of internal node indices in the reconstructed (extant species)
phylogeny, V = (1, . . ., n−1), labeled such that 1 is the index representing the
root of the tree, with internal node indices increasing toward the present
(i.e., labeled in preorder sequence), and the age for any internal node i is xi
(for i ∈ V). The occurrence times and calibration nodes in the extant tree are
provided for m sampled fossil specimens. For any given FBD tree, k of m
fossils lie directly in the branches and therefore are ancestor fossils (e.g.,
fossil 2 in Fig. 1). Accordingly, m − k of m fossils attach in the FBD tree at
a speciation event and thus induce unobserved lineages. We denote the
vector of fossil calibration indices as F = (1, . . ., m); yf is the age of fossil f
obtained from the fossil record and zf is the time at which the fossil attaches
to the unresolved FBD tree, either forming a new lineage via speciation or as
an ancestor fossil (for f ∈ F ).

The probability of a resolved FBD tree is provided in equation 5 of Stadler
(47). Importantly, the probability of the resolved FBD tree is invariant to
changing the attachment lineage (in the FBD tree) of fossil f at time zf;
therefore, we multiply the resolved FBD tree probability by the number of
possible attachment lineages γf to obtain the unresolved FBD tree proba-
bility (e.g., for fossil 1 in Fig. 1B, there are two lineages to which the fossil
might attach, γ1 = 2). Moreover, for any fossil where zf > yf, because the
fossil may attach as either the left or right lineage at the speciation event in
the resolved FBD tree [as our tree probability is on so-called oriented trees
(69)], we multiply the probability by a factor of 2. Finally, if the fossil is an
ancestral fossil, where zf = yf, we do not account for a speciation event; thus,
I f is the indicator function for fossil f, where I f = 0 if the fossil is ancestral,
otherwise I f = 1.

Given the notation defined above and the FBD probability defined by
Stadler (47), we obtain the probability of an unresolved FBD tree,

f ½T jλ,μ,ψ,ρ,x1�=
1

ðλ�1− p̂0ðx1Þ
�Þ2

4λρ
qðx1Þ

∏
i∈V

4λρ
qðxiÞ

∏
f∈F

ψγf

�
2λ

p0ðyf Þqðyf Þ
qðzf Þ

�I f

,

[1]

with

c1 =
����

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ− μ−ψÞ2 + 4λψ

q ����,

c2 =−
λ− μ− 2λρ−ψ

c1
,

qðtÞ= 2
�
1− c22

�
+e−c1tð1− c2Þ2 + ec1t ð1+ c2Þ2,

p0ðtÞ= 1+

−ðλ− μ−ψÞ+ c1
e−c1tð1− c2Þ− ð1+ c2Þ
e−c1tð1− c2Þ+ ð1+ c2Þ
2λ

,

p̂0ðtÞ= 1−
ρðλ− μÞ

λρ+ ðλð1− ρÞ− μÞe−ðλ−μÞt
:

Note that p0(t) is the probability that a lineage at time t in the past has no
sampled extant species or sampled fossil descendants, and p̂0ðtÞ is the
probability that a lineage at time t in the past has no sampled extant species
descendants and arbitrarily many fossil descendants. Further, we define p1(t)
as the probability that an individual alive at time t before the present has
precisely one sampled extant descendant and no sampled fossil descendants
(47), and we have p1ðtÞ= 4ρ

qðtÞ. We state alternative FBD tree probabilities in SI
Appendix, detailing conditioning on the stem age x0 (SI Appendix, section
S.1.1) and when there are no sampled ancestors (SI Appendix, section S.1.1).
Additionally, we discuss the parameters needed to write down the FBD
probability in SI Appendix, section S.1.3.

MCMC Approximation Under the FBD Model. We implemented the FBD model
in a Bayesian framework for estimating species divergence times on a fixed
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tree topology by building the model into an existing program, DPPDiv
(version 1.1; https://github.com/trayc7/FDPPDIV) (19, 31, 56). The input data
(D) are as follows:

τ Extant-species tree topology
X DNA sequences for n extant species
y = (y1, . . ., ym) Vector of occurrence times for m fossils
C Calibration nodes in τ for all fossils

Note that these are the same input data required for divergence time esti-
mation using calibration density approaches (29, 31, 32). We use MCMC to
approximate the joint posterior distribution of internal node ages and fossil
attachment times (T ) together with all other model parameters.

The FBD model acts as a prior on speciation times, explicitly assuming that
this model generated T . Additionally, we assume prior distributions on
parameters of the model of sequence evolution and on the substitution
rates associated with each branch in the tree. These models correspond to
the exchangeability rates and nucleotide frequencies of the GTR model, the
shape parameter of the gamma distribution on site rates, and the parame-
ters of the relaxed-clock model describing lineage-specific rate variation
across the tree. The implementation of these models is described in detail in
Heath et al. (19), and we use the notation θ to represent these parameters.
Using this framework, we sample from the posterior distribution of un-
resolved FBD trees:

f ½T ,λ,μ,ψ,ρ,θ,x1jD= ðτ,X,C,yÞ�= f ½XjT ,θ�f ½T jλ,μ,ψ,ρ,x1�f ½λ,μ,ψ,ρ,x1,θ�
f ½D� :

We note that f[XjT , θ] is the likelihood of the tree and sequence model
parameters, which we calculate with Felsenstein’s pruning algorithm (71,
72); f[T jλ, μ, ψ, ρ, x1] is the prior probability of the unresolved FBD tree given
in Eq. 1; and f[λ, μ, ψ, ρ, x1,θ] is the prior distribution on the model parameters
and hyperparameters (specified by the user). Because we use the numerical
method MCMC, we avoid computation of the normalizing constant f[D].

Our implementation of the FBD model assumes that μ ≤ λ; otherwise, the
process will go extinct with probability 1. Furthermore, instead of the
parameters λ, μ, and ψ, we use the following parameterization:

d = λ − μ Net diversification rate
r = μ/λ Turnover
s = ψ/(μ + ψ) Probability of fossil observation before

species extinction

Importantly, we can recover λ, μ, and ψ via

λ=
d

1− r
, μ=

rd
1− r

, ψ=
s

1− s
rd
1− r

:

The d, r, s, ρ parameterization has the advantage that r, s, ρ ∈ [0,1] and only
d is on the interval (0, ∞), whereas the parameterization using λ, μ, ψ, ρ
requires a prior on an unbounded interval (0, ∞) for the three parameters
λ, μ, ψ.

We used standard MCMC proposals for operating on the parameters and
hyperparameters of the FBD model (d, r, s, ρ, and x1) and sequence sub-
stitution model (θ), changing the ages (x) of internal nodes, and updating
the attachment ages of the fossils (z). These proposal mechanisms are de-
scribed in greater detail in previous implementations of Bayesian inference
software (7, 8, 11, 14, 19, 32, 58, 73, 74), and all were available previously
in DPPDiv.

We formulated reversible-jump MCMC (rjMCMC) proposals to sample
fossil attachment configurations and to determine whether fossils lie directly
on lineages (ancestral fossils) or represent “tip fossils” by attaching to the
resolved FBD tree via speciation (Fig. 1B). Moves that cause a fossil to be-
come ancestral to an extant species, as well as reciprocal moves changing
an ancestral fossil to one that forms an extinct lineage, result in a di-
mensionality change to the unresolved FBD tree by altering the number of
speciation events; therefore, rjMCMC (75) proposals are needed to sample
from the posterior distribution. In SI Appendix, section S.2, we outline our
rjMCMC proposals on the fossil attachment configurations. These pro-
posals, which are similar to the polytomy proposals of Lewis et al. (76),
result in a probability mass for each fossil f on the state where yf = zf.
Ultimately, our MCMC framework allows us to sample ages of nodes in the
extant tree while marginalizing over the fossil attachment times and FBD
model hyperparameters.

Simulation Study: Data Generation. Trees, fossils, and sequences. We evaluated
the performance—accuracy, precision, and robustness—of absolute node-
age estimation under the FBD model using simulated data. Complete tree
topologies and branch times were generated under a constant-rate birth–
death process conditional on n = 25 extant species by using the generalized
sampling approach (77, 78) (simulation source code: https://github.com/
trayc7/FossilGen). Three separate sets of simulated trees were generated,
each with 100 replicates, such that the turnover rate (r = μ/λ) varied among
the sets: (A) r = 0.1, (B) r = 0.5, and (C) r = 0.9. The rate of diversification (d =
λ − μ) was adjusted so that the expected root age (x1) was approximately
equal to 200: (A) d = 0.0134, (B) d = 0.0106, and (C) d = 0.0041.

An absolute fossil history was generated on each complete phylogeny
according to a continuous time Poisson process with rate ψ = 0.1. At this step
in our forward-time simulation model, the Poisson rate, ψ, represents the
rate of fossilization opportunity over the tree; thus, this set of fossils is the
complete fossil record without accounting for preservation and recovery.
The complete tree with absolute fossil history corresponds to a simulation of
a complete FBD tree (47) (SI Appendix, Fig. S1). Trees generated under this
model with ψ = 0.1 produced dense fossil records for each of our simulations
(SI Appendix, Table S4). We chose to vary the turnover parameter, r, because
this value controls the branching time distribution in reconstructed trees (79)
as well as the distribution of fossils. Under high values of r, more lineages
exist on which fossilization events may occur, resulting in more sampled
fossils on these trees that are not ancestors of extant species. Conversely,
trees with low turnover will produce fewer fossils, with a greater proportion
of fossils lying directly on branches of the extant tree. For each fossil, a cal-
ibration node was identified. This node represented the most recent node in
the extant tree that was ancestral to the fossil.

We simulated DNA sequence data for every extant tip, for every simulation
replicate. Sequences were generated under the GTR substitution model (80)
with gamma-distributed rate heterogeneity among sites (81, 82) in the
program Seq-Gen (83). For details about simulation parameters, see SI Ap-
pendix, section S.3.1.
Random fossil recovery. Without question, fossils available for calibrating bi-
ological datasets never represent the absolute fossil history. We addressed
this for each set of simulations by randomly sampling a percentage, ω, of the
total fossils. This strategy produced four sets of calibration fossils for each
simulation replicate—ω5 = 5%, ω10 = 10%, ω25 = 25%, and ω50 = 50%—and
was applied across the three different simulation conditions (A, B, and C).

Because we planned to compare divergence time estimates under the FBD
model to calibration density approaches, we additionally constructed a set of
calibration fossils. The calibration fossils were taken from the ω10 sample by
selecting the oldest fossil specimen available for each calibration node.
Additionally, if fossil f was assigned to date node i and fossil g was assigned
to node j, fossil f was removed if xi > xj and yf < yg. Calibration density
approaches condense the available information in the fossil record; thus, the
ωcal10 set of fossils resulted in fewer calibrating ages compared with the ω10

set (SI Appendix, Table S4).
Nonrandom sampling and uncertain fossil placement. We additionally in-
vestigated the impact of nonrandom sampling on estimates of node ages (for
details, see SI Appendix, section S.3.2). Specifically, we emulated preserva-
tion-biased fossil recovery (SI Appendix, section S.3.2.1) as well as fossil
sampling from discrete stratigraphic intervals (SI Appendix, section S.3.2.2).
Additionally, we generated datasets with two different nonrandom extant
species sampling schemes (SI Appendix, section S.3.2.3). Under taxonomy-
driven sampling, the extant species were sampled to maximize diversity, thus
emulating species trees of higher-level taxa. A second sampling strategy
produced sets of taxa representing concentrated in-group sampling with
a distant out-group. Because divergence time estimation relies on correctly
assigning the fossils to calibration nodes, we also examined the impact of
increased uncertainty in the fossil placement (SI Appendix, section S.3.2.4 for
methods and results).

Simulation Study: Divergence Time Analyses. General priors and MCMC details.
We estimated species divergence times for each simulation replicate and
fossil subset using the Bayesian inference program DPPDiv (19, 31, 56). Each
analysis, regardless of the calibration model, conditioned divergence times
on the true extant species topology, assuming a strict molecular clock with
a GTR+Γ substitution model. We applied standard prior distributions on the
parameters and hyperparameters of the clock and substitution models (19, 31).

Each analysis was run using a single Markov chain of 2 million iterations,
sampling every 100th step, with the first 500,000 iterations discarded as
burn-in before the MCMC samples were summarized. Because we ran
∼2,200 MCMC analyses, it was not feasible to perform convergence diag-
nostics on every replicate analysis. However, because we evaluated perfor-
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mance under a unified framework, in which all models are implemented
in the same program with consistent priors and sampling mechanisms for
overlapping parameters, summary statistics over 100 replicates are very in-
formative about the accuracy and precision of node age estimates across our
different simulation treatments and analyses. Nevertheless, for a subset of
our analyses (five for each type of analysis), we evaluated the MCMC sam-
ples in the program Tracer (62) and confirmed that the Markov chains ef-
fectively sampled the stationary distributions.
Node age inference under the FBD model. We performed divergence time
analyses under the FBD model on every simulation replicate for each fossil-
sampling and taxon-sampling treatment. Our implementation of the FBD
model has four hyperparameters: d, r, s, and ρ. Because we are interested
only in estimating node ages and not in inferring the parameters of the
diversification model, we chose uniform prior densities on d, r, and s to
marginalize over a wide range of possible values. The diversification rate
d may take any value on the interval (0, ∞); however, because they are not
likely in nature, we did not simulate under extremely large values. Thus, we
place a proper, uniform prior distribution on d with an arbitrarily chosen
upper limit: Unif(0,30000). The turnover (r) and fossilization (s) parameters
can each take values only on the interval (0,1), and we simply chose Unif(0,1)
prior densities for each of these parameters. The bulk of our simulated
datasets included all extant taxa; therefore, we fixed the probability of
sampling parameter to ρ = 1. It is important to note, however, that although
we assume that the uniform priors on the diversification parameters are
noninformative, in reality such prior densities—particularly diffuse, trun-
cated uniform priors—often are highly informative because they place sig-
nificant prior mass on regions in parameter space with very low posterior
probability (84, 85). Accordingly, future implementations of this model will
include development of alternative hyperprior densities for these parame-
ters. Nevertheless, our simulation analyses indicate that node age estimates
are robust to these uniform hyperpriors.
Node age inference using calibration densities. Calibration density approaches re-
quire that only a single fossil be assigned to each calibrated node. Thus, the
set of calibration fossils ωcal10 constructed from the 10% sample for both the
random and preservation-biased subsets was used to estimate absolute node
ages by using three different node-calibration densities: (i) fixed scaled, (ii)
fixed true, and (iii) hyperprior. Each of the calibration density analyses as-
sumed an exponential prior distribution, with the methods differing in the
parameterization of the prior density. The exponential distribution is char-
acterized by a single rate parameter e, which dictates both the mean (e−1)
and variance (e−2) of the prior density. Calibration priors typically describe
the duration between the calibrated node and its fossil descendant. The
fossil acts as a hard, minimum bound on the age of the node; thus, the
calibration density is offset by the age of the fossil.

The fixed-scaled analysis applied a fixed-parameter exponential distri-
bution to each calibrated node, where for any node i calibrated by the fossil
f, the rate of the prior density was scaled by the age of the fossil yf such

that the rate of the exponential was e=
�
1
5 yf

�−1
. Thus, for very young fossils

the expected age of the calibrated node
�
E½xi �= yf + 1

5 yf
�
would be smaller

compared with the expectation for nodes calibrated by older fossils. By
scaling the calibration density based on the fossil age, we attempted to
model the arbitrary parameterization of fossil prior distributions common in
divergence time estimation analyses.

The fixed-true calibration prior represents an ideal albeit unrealistic case in
which the density is parameterized such that the expected age of the cali-
brated node is equal to its true age. Under this calibration prior, for any node i
with true age x*i and calibrated by fossil f with age yf, the rate parameter of
the exponential density was fixed to e= ðx*i − yf Þ−1. When applied as a zero-
offset calibration prior, the fixed-true parameterization is expected to result
in accurate node age estimates because the expected age of the node is
equal to the true value ðE½xi �= x*i Þ.

The hierarchical calibration density approach uses a hyperprior on the rate
parameters of exponential distributions (31). This method results in robust
estimates of node ages and assumes that the vector of e-rates for all cali-
brated nodes is drawn from a Dirichlet process model. By allowing the rates
of exponential calibration densities to be random variables using MCMC,
calibration node ages are sampled from a mixture of prior distributions.
Furthermore, this approach accounts for uncertainty in these hyper-
parameters and reduces the user’s burden with regard to parameter
specification. For these analyses, we specified a prior mean of three for
the number of e-rate categories and set the remaining hyperparameters
to those of Heath (31).

All calibration density methods require a prior on node ages. This prior is
applied to both calibrated and uncalibrated nodes and describes the distri-
bution of speciation events over time. For all analyses using calibration priors
(fixed scaled, fixed true, and hyperprior), we assumed a constant-rate recon-
structed birth–death process (i.e., an FBD model with ψ = 0) (39, 40) as a prior
on speciation times. This model has three hyperparameters on which we
applied the following priors: d ∼ Unif(0, 30000), r ∼ Unif(0, 1), and ρ = 1.
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