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To fully understand macroevolutionary patterns and processes, we need to include both extant and
extinct species in our models. This requires phylogenetic trees with both living and fossil taxa at the tips.
One way to infer such phylogenies is the Total Evidence approach which uses molecular data from living
taxa and morphological data from living and fossil taxa.
Although the Total Evidence approach is very promising, it requires a great deal of data that can be hard

to collect. Therefore this method is likely to suffer from missing data issues that may affect its ability to
infer correct phylogenies.
Here we use simulations to assess the effects of missing data on tree topologies inferred from Total

Evidence matrices. We investigate three major factors that directly affect the completeness and the size
of the morphological part of the matrix: the proportion of living taxa with no morphological data, the
amount of missing data in the fossil record, and the overall number of morphological characters in the
matrix. We infer phylogenies from complete matrices and frommatrices with various amounts of missing
data, and then compare missing data topologies to the ‘‘best” tree topology inferred using the complete
matrix.
We find that the number of living taxa with morphological characters and the overall number of

morphological characters in the matrix, are more important than the amount of missing data in the fossil
record for recovering the ‘‘best” tree topology. Therefore, we suggest that sampling effort should be
focused on morphological data collection for living species to increase the accuracy of topological infer-
ence in a Total Evidence framework. Additionally, we find that Bayesian methods consistently outperform
other tree inference methods. We therefore recommend using Bayesian consensus trees to fix the tree
topology prior to further analyses.
� 2015 The Authors. Published by Elsevier Inc. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Although most species that have ever lived are now extinct
(Novacek and Wheeler, 1992; Raup, 1981), many large-scale
macroevolutionary studies focus solely on living species (e.g.
Meredith et al., 2011; Jetz et al., 2012). Ignoring fossil taxa may
lead to misinterpretation of macroevolutionary patterns and
processes such as the timing of diversification events (e.g. Pyron,
2011), relationships among lineages (e.g. Manos et al., 2007) or
niche occupancy (e.g. Pearman et al., 2008). This has led to
increasing consensus among evolutionary biologists that fossil taxa
should be included in macroevolutionary studies (Jackson and
Erwin, 2006; Quental and Marshall, 2010; Dietl and Flessa, 2011;
Slater and Harmon, 2013; Fritz et al., 2013). To do this, however,
we need to be able to place living and fossil taxa into the same
phylogenies; a task that remains difficult despite recent method-
ological developments (e.g. Pyron, 2011; Ronquist et al., 2012a;
Matzke, 2014).

Up to now, three main approaches have been used to place both
living and fossil taxa into phylogenies. These approaches differ
mainly in how they treat fossil taxa and their data. One can use
fossils as tips or as nodes in the phylogeny, and can use only the
age of the fossils, only the morphology of the fossils, or age and
morphology jointly. Classical cladistic methods use matrices
containing morphological data from both living and fossil taxa
and treat each taxon as a tip in the phylogeny. Relationships
among the taxa are then inferred using optimality criteria such
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as maximum parsimony (Hennig, 1966; Felsenstein, 2004). This
approach is commonly used by palaeontologists but it ignores
the additional molecular data available from living species and
does not allow use of probabilistic methods for dealing with phy-
logenetic uncertainty. Neontologists, on the other hand, more com-
monly use probabilistic approaches (e.g. Maximum Likelihood or
Bayesian methods) based on matrices containing only molecular
data from living species. Because fossil taxa do not usually have
available DNA, only fossil occurrence dates are used to time cali-
brate phylogenies (Zuckerkandl and Pauling, 1965). There have
been great improvements in the theory and application of these
two approaches (e.g. Bapst, 2013; Stadler and Yang, 2013; Heath
et al., 2014) as well as much debate about the ‘‘best” approach to
use (e.g. Spencer and Wilberg, 2013; Wright and Hillis, 2014).
Neither approach, however, uses all the available data.

A final approach, known as the Total Evidence method, uses
matrices containing molecular data from living taxa and morpho-
logical data from both living and fossil taxa (Eernisse and Kluge,
1993). This approach treats every taxa as a tip in the phylogeny,
uses the occurrence age of the fossils to time calibrate the phy-
logeny (known as tip-dating; Ronquist et al., 2012a), and allows
the use of probabilistic methods for estimating phylogenetic
uncertainty (Ronquist et al., 2012a). The Total Evidence method
is becoming an increasingly popular way of adding fossil taxa to
phylogenies (e.g. Pyron, 2011; Ronquist et al., 2012a; Schrago
et al., 2013; Slater, 2013; Beck and Lee, 2014; Arcila et al., 2015).
Although the Total Evidence approach seems very promising, there
is one big drawback in using this approach: it requires both
molecular and morphological data, both of which can be difficult
(or impossible) to collect for every living and fossil taxon in the
tree. Morphological data for living taxa are rarely collected when
molecular data are available (e.g. O’Leary et al., 2013 vs.
Meredith et al., 2011), and for fossil taxa, data can only be collected
from features preserved in the fossil record. For example, in verte-
brates, the hardest parts of the skeleton are more often preserved
than soft parts (Sansom and Wills, 2013); and molecular data are
(nearly) always unavailable. Therefore Total Evidence matrices
are likely to contain a large proportion of missing data that may
affect the method’s ability to infer correct topologies, branch
lengths and support values (Salamin et al., 2003).

Although missing data do not appear be a major problem in
molecular and morphological matrices separately (as long as
enough data overlap in each case, and missing data are not phylo-
genetically biased; Wiens, 2003; Wiens et al., 2005; Wiens, 2006;
Wiens and Moen, 2008; Lemmon et al., 2009; Sanderson et al.,
2011; Roure and Philippe, 2011; Pattinson et al., 2014), it may
become more of an issue in Total Evidence matrices containing
both molecular and morphological data for living and fossil taxa.
This may be particularly problematic as fossil taxa (generally) do
not have molecular data, resulting in a large section of missing data
in Total Evidence matrices. Until now, few attempts have been
made to study the impact of this missing data issue on phyloge-
netic inference in a Total Evidence framework (i.e. using both
molecular and morphological data; Wiens et al., 2005; Manos
et al., 2007; Pattinson et al., 2014). These previous studies assessed
the effect of missing data on topology by either (1) comparing a
dataset with missing data to subsets without missing data
(Wiens et al., 2005); or (2) removing both molecular and some
morphological data from living taxa to create artificial fossils
(Manos et al., 2007; Pattinson et al., 2014). Both approaches have
shown that missing data are not a major problem and should not
be an obstacle to combining both living and fossil species in the
same phylogenies. The way these studies were conducted,
however, means that their conclusions are not generally applicable
across all scenarios involving missing data in Total Evidence
phylogenies. For example, using an empirical (rather than simula-
tion based) approach limits their conclusions to studies with
similar distributions of data across species in the phylogeny.
Additionally, one of the three previous studies did not include
fossil taxa in their analyses, so their results cannot be used to make
conclusions about how missing data may influence the placement
of fossils (Wiens, 2003). The other two studies did include fossil
taxa, but used the patchiness of the fossil record to determine
how to remove data from their matrices (Manos et al., 2007;
Pattinson et al., 2014). Data for living species are unlikely to be
missing in this patchy way, instead full molecular data with the
complete absence of morphological data is a likely pattern
(Guillerme and Cooper, 2015). Finally, these previous studies
mainly focused on how missing data in fossil taxa affect the place-
ment of fossils, ignoring the effects of missing data in living species
(Manos et al., 2007; Pattinson et al., 2014).

In this study, we propose a theoretical assessment of the effect
of missing data in the Total Evidence method by removing living
taxa with morphological data, fossil data, all data for certain
characters and the combination of these three aspects. This is an
advance on previous studies because we use large-scale simula-
tions and analyse the effects of three distinct aspects of missing
data thus focusing on both neontological and palaeontological
parts of the matrix. In addition, we test the effect of missing data
by measuring two crucial aspects of topology in both Maximum
Likelihood and Bayesian phylogenies: (i) the conservation of clades
(based on the Robinson–Foulds distance; Robinson and Foulds,
1981) and (ii) the displacement of wild-card taxa (based on the
Triplets distance; Critchlow et al., 1996) rather than just a single
measure of clade conservation or clade support (cf. Wiens et al.,
2005; Pattinson et al., 2014).

We focus on the effects of missing data on our ability to recover
tree topology because it is a crucial aspect of a phylogeny in many
macroevolutionary studies, for example when trying to elucidate
the evolutionary relationships among species (e.g. Meredith et al.,
2011; Jetz et al., 2012), or for studying evolutionary transitions
(e.g. Friedman, 2010). Although branch length estimation is also
important (namely for timing extinction and/or speciation events;
e.g. Ronquist et al., 2012a), we do not consider branch lengths in
this study. This is partially due to difficulties with simulating
branch lengths and topology simultaneously, but also because
previous studies have already empirically assessed the effect of
the Total Evidence method on branch length variation but using
topological constraints (Ronquist et al., 2012a; Schrago et al.,
2013; Slater, 2013; Beck and Lee, 2014). Thus understanding the
sensitivity of topology to missing data is important for assessing
the accuracy of tree estimation in the Total Evidence framework.
To our knowledge, this question has never been formally assessed.

Here we use a simulation approach to assess the effect of miss-
ing data on tree topologies inferred from Total Evidence matrices.
Since the molecular part of a Total Evidence matrix acts like a
‘‘classical” molecular matrix containing only the living taxa
(Ronquist et al., 2012a), the effect of missing data on such matrices
is well known (Wiens, 2006; Wiens and Moen, 2008; Lemmon
et al., 2009; Roure and Philippe, 2011). Therefore, we focus only
on missing data in the morphological part of the matrix. We inves-
tigate three major parameters that directly affect the completeness
and size of the morphological part of the matrix, and reflect empir-
ical biases in data availability: (i) the proportion of living taxa with
no morphological data; (ii) the proportion of missing data in the
fossil taxa; and (iii) the amount of morphological characters for
both living and fossil taxa in the matrix (i.e. the size of the matrix).
We remove data from a Total Evidence matrix by changing the val-
ues of these three parameters and then assess how this affects the
resulting tree topology. We infer the topology from the matrices
using both Maximum Likelihood and Bayesian inference methods
and measure the differences in topology using two different
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topological distance metrics as proxies for clade conservation and
for wild-card taxa placement. We find that minimising the number
of living taxa with no morphological data and the number of
missing morphological characters improves the ability of Total
Evidence methods to recover the ‘‘best” tree topology more so than
minimising the amount of missing data in the fossil record.
Additionally, we find that the ability of Total Evidence methods
to recover the ‘‘best” tree topology is increased when using
Bayesian methods.

2. Materials and methods

To explore how missing data in the morphological partition of
Total Evidence matrices influences tree topology, we used the
following protocol (Fig. 1):

1. Generating the matrix:
We randomly generated a birth–death tree (hereafter called the
‘‘true” tree) and used it to simulate a matrix containing both
Fig. 1. Protocol outline. (1) We randomly generated a birth–death tree (the ‘‘true” tree) a
removed data from the morphological part of the ‘‘complete” matrix resulting in 125 ‘‘m
Maximum Likelihood and Bayesian methods. (4) We compared the ‘‘missing-data” trees
molecular and morphological data for living and fossil taxa
(hereafter called the ‘‘complete” matrix).

2. Removing data:
We removed data from the morphological part of the ‘‘com-
plete” matrix to simulate the effects of missing data by modify-
ing three parameters (i) the proportion of living taxa with no
morphological data (ML), (ii) the proportion of missing data in
the fossil taxa (MF) and (iii) the number of morphological char-
acters (NC). We call the resulting 125 matrices ‘‘missing-data”
matrices.

3. Estimating phylogenies:
We inferred phylogenetic trees from the ‘‘complete” matrix and
from the 125 ‘‘missing-data” matrices resulting in one tree gen-
erated from a matrix with no missing data (hereafter called the
‘‘best” tree) and 125 trees inferred from the matrices with miss-
ing morphological data (hereafter called the ‘‘missing-data”
trees). Phylogenies were inferred via both Maximum Likelihood
and Bayesian approaches.
nd used it to simulate a matrix with no missing data (the ‘‘complete” matrix). (2) We
issing-data” matrices. (3) We built phylogenetic trees from each matrix using both
to the ‘‘best” tree. We repeated these four steps 50 times.
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4. Comparing topologies:
We compared the ‘‘best” tree to the ‘‘missing-data” trees to
assess the influence of each parameter (ML;MF ;NC) and their
interactions on the topologies of our phylogenies.
We repeated these four steps 50 times to account for variation
in our random parameters in the simulations.

2.1. Generating the matrix

First we randomly generated a ‘‘true” tree of 50 taxa in R v. 3.0.2
(R Core Team, 2014) using the package diversitree v. 0.9–6
(FitzJohn, 2012). We generated the tree using a birth death process
by sampling speciation (k) and extinction (l) rates from a uniform
distribution (bounded between 0 and 1) but maintaining k > l
(Paradis, 2011). Empirical Total Evidence matrices vary in whether
they have more fossil than living taxa or vice versa. For example,
fossil taxa make up 88% (Beck and Lee, 2014), 58% (Schrago et al.,
2013), 48% (Pyron, 2011), 31% (Ronquist et al., 2012a) and 31%
(Slater, 2013) of taxa in various studies. To avoid biasing our
simulations towards either living or fossil taxa and to make each
simulation comparable, we implemented a rejection sampling
algorithm to select only trees with 25 living and 25 fossil taxa.
The fossil taxa were considered as unique tips at the end of extinct
lineages. We then added an outgroup to the tree, using the mean
branch length of the tree to separate the outgroup from the rest
of the taxa, and with the branch length leading to the outgroup
set as the sum of the mean branch length and the longest root-
to-tip length of the tree.

Next, we generated a molecular and a morphological matrix
from the ‘‘true” tree. The molecular matrix was simulated from
the ‘‘true” tree using the R package phyclust v. 0.1–14 (Chen,
2011). The matrix contained 1000 character sites for 51 taxa and
was generated using the seqgen algorithm (Rambaut and Grassly,
1997) and using the HKY model (Hasegawa et al., 1985) with
random base frequencies (sampled from a uniform probability
distribution bounded between 0 and 1 with the total frequency
for the four bases equal to 1) and transition/transversion rate of
two (Douady et al., 2003). The substitution rates were selected
from a gamma distribution with an (a) shape of 0.5 (Yang, 1996).
In practice, a value of a < 1 decreases the number of sites with high
substitution rates, thus reducing homoplasic sites and increasing
the phylogenetic signal (Hassanin et al., 1998; Estoup et al.,
2002). Also, we chose this a value to be consistent with our
protocol for simulating morphological characters (see below). This
model and these parameter settings strike a balance between
realism for empirical datasets (e.g. Douady et al., 2003; Kelly
et al., 2014) and parameter richness with more complex models
(e.g., GTR, multiple partitions with independent models), making
them more suitable for our computational limitations (even with
the parameters defined, the total computational time for the whole
analysis was around 150 CPU years). All the molecular information
for fossil taxa was replaced by missing data (‘‘?”).

We simulated the morphological matrix using the rTraitDisc
function from the R package ape v. 3.0–11 (Paradis et al., 2004)
to generate a matrix of 100 character sites for 51 taxa. We assigned
the number of character states (either two or three) for each
morphological character by sampling with a probability of 0.85
for two states characters and 0.15 for three state characters (based
on an empirical review of published matrices, see Appendix A and
Fig. A1 within). We then ran an independent discrete character
simulation for each character using the ‘‘true” tree with the
character’s randomly selected number of states (two or three)
and assuming an equal rate of change (i.e. evolutionary rate) from
one character state to another (Pagel, 1994). This method allows us
to have only two parameters for each character: the number of
states and the evolutionary rate. For each character, the evolution-
ary rate was sampled from a gamma distribution with a = 0.5. We
used low evolutionary rate parameters to be consistent with the
molecular rate parameters, to avoid homoplasy in the morpholog-
ical part of the matrix and create a clear phylogenetic signal
(Wright and Hillis, 2014). Topological error has been shown to be
minimal at a morphological rate of 0.5 when using the Mkv model
(Lewis, 2001; Wright and Hillis, 2014). Note, however, that Wright
and Hillis (2014) have shown that low morphological rates (<0.5)
increase variance in topological error, but we discarded simula-
tions with such topological error by selecting only matrices with
a ‘‘fair” phylogenetic signal (see Estimating phylogenies section
below; Zander, 2004) so this should not influence our results.

Finally, we combined the morphological and molecular
matrices obtained from the ‘‘true” tree. Hereafter we call this the
‘‘complete” matrix, i.e. the matrix with no missing data except
for the molecular data of the fossil taxa.

2.2. Removing data

To explore the effect of missing morphological data on topolog-
ical recovery, we removed various amounts of the ‘‘complete”
matrix to obtain matrices with missing morphological data.
Hereafter, we call these matrices with missing morphological data
the ‘‘missing-data” matrices. Note that the amount of molecular
data remained constant throughout our simulations: 1000 molec-
ular characters for living taxa and no molecular data for fossil taxa
(see above). We removed morphological data using three data
incompleteness parameters:

1. The proportion of missing living taxa (ML). This first missing-
data parameter corresponds to the proportion of living taxa
with no morphological data. It represents the number of living
taxa that are present in the matrix but have only molecular data
available. This reflects the fact that, because of the increasing
ease of collecting molecular data, morphological data for living
species are rarely collected (Guillerme and Cooper, 2015).
Therefore, many living species will have only molecular data
available. In practice, we removed all the morphological data
from randomly chosen living taxa with five different propor-
tions: 0%, 10%, 25%, 50% or 75% of living taxa with no morpho-
logical data.

2. The proportion of missing data in the fossil record (MF). This
missing data parameter represents the completeness of the fos-
sil record. Due to preservation biases, missing data for fossil
taxa are common (Sansom andWills, 2013). In practice, we ran-
domly removed a proportion of data from across the fossil taxa
with five different proportions: 0%, 10%, 25%, 50% or 75% of
overall missing data for the fossil taxa. Note that 50% missing
data for fossil taxa does not mean that each fossil is missing
50% of its morphological data. Instead this 50% refers to missing
fossil data across the whole matrix. Some fossils may retain
100% of their data and others may lose most of their data at this
parameter value (down to a minimum threshold of 5% available
data; see below).

3. The number of morphological characters for both living and fos-
sil taxa (NC). This parameter is not a missing data parameter per
se but rather an indication of the size of the matrix. Any mor-
phological matrix of any size has indeterminate missing data,
given that the total number of characters is undefined, but
presumably large. Therefore, this parameter corresponds to
the overall number of characters available for both living and
fossil taxa. In practice, we randomly removed entire characters
from the morphological matrix reducing it to: 100, 90, 75, 50 or
25 characters. Note that these levels are equivalent to the two
other parameters (i.e. 0%, 10%, 25%, 50% or 75% of ‘‘missing”
morphological characters).
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Each parameter represents a different way of removing data
from the morphological part of the matrix:ML removes entire rows
from the living data; MF removes cells from the fossil data; and NC

removes columns across both living and fossil data. Note that ML

and MF differ not only because of the region of the matrix affected:
for ML all the morphological data of a percentage of living taxa are
removed, whereas for MF a percentage of the data are removed at
random from across the whole of the morphological matrix for
fossil taxa.

We created matrices using all parameter combinations result-
ing in 125 (53) ‘‘missing-data” matrices. Note that one of these
combinations (ML ¼ 0%; MF ¼ 0% and NC ¼ 100) has no missing
data so is equivalent to the ‘‘complete” matrix, thus we have one
effectively complete matrix in our 125 ‘‘missing-data” matrices.
In practice, we first removed the data following the two missing
data parameters ML and MF and then removed data following the
NC parameters. To avoid matrices containing taxa without any data
(morphological or molecular), we repeated the random deletion
until the matrices contained at least 5% of data for any taxa. Note
that the living taxa always had at least 90% of data (the 1000
molecular characters).

2.3. Estimating phylogenies

From the resulting matrices we generated two types of trees:
the ‘‘best” tree inferred from the ‘‘complete” matrix and the
‘‘missing-data” trees inferred from the 125 matrices with various
amounts of missing data. The ‘‘true” tree was used to generate
the ‘‘complete” matrix and reflects the ‘‘true” evolutionary history
in our simulations. The ‘‘best” tree, on the other hand, is the best
tree we can build using state-of-the-art phylogenetic methods. In
real world situations, the ‘‘true” tree is never available to us
because we cannot know the true evolutionary history of a clade
(except in very rare circumstances, e.g. Rozen et al., 2005). We
compare ‘‘best” trees to ‘‘missing data” trees but could also
compare ‘‘true” trees to the ‘‘missing data” trees. In practice, the
difference between the ‘‘best” trees and the ‘‘missing data” trees
represents the effect of our missing data parameters and of the
phylogenetic methods used to infer the ‘‘missing data” trees. The
difference between the ‘‘true” and the ‘‘missing data” trees,
however, represents the effect of our parameters used to generate
the ‘‘true” tree and the algorithms used to generate the ‘‘complete”
matrix as well as the effect of our missing data parameters and the
phylogenetic methods used. Because the main aim of this study is
to look at the effect our missing data parameters on topological
recovery, we chose to represent only the comparisons between
the ‘‘best” trees and ‘‘missing data” trees. The results of the
comparisons of the ‘‘true” tree and the ‘‘missing data” trees are
available in Appendix B. Note that this makes little difference to
our overall results.

2.3.1. Maximum Likelihood
The ‘‘best” tree and the ‘‘missing-data” trees were inferred using

RAxML v. 8.0.20 (Stamatakis, 2014). For the molecular data, we
used the GTR + C4 model (Tavaré, 1986; default GTRGAMMA in
RAxML v. 8.0.20; Stamatakis, 2014). For the morphological data,
we used the Mkvmodel (Lewis, 2001) assuming an equal state fre-
quency and a unique overall substitution rate (l) following a
gamma distribution of the rate variation with four distinct cate-
gories (Mkv + C4; -K MK option in RAxML v. 8.0.20; Stamatakis,
2014). We used RAxML because it automatically corrects for acqui-
sition bias (Lewis, 2001). It is also heavily used in the literature for
Maximum Likelihood tree inference (e.g. Roure and Philippe, 2011;
Bogdanowicz et al., 2012; Springer et al., 2012; O’Leary et al., 2013;
Kelly et al., 2014) and is one of the fastest methods available
(Stamatakis et al., 2008).
To measure the support for each branch in our simulated
phylogenies we first ran a fast bootstrap analysis (Lazy Sub-tree
Rearrangement) with 500 replicates on the ‘‘complete” matrix.
We removed all the simulations with a median bootstrap support
lower than 50 as a proxy for weak phylogenetic signal (Zander,
2004). We repeated this selection until we obtained 50 sets of sim-
ulations (i.e. 50 ‘‘complete” and 50 � 125 ‘‘missing-data” matrices)
with a relatively strong phylogenetic signal (median boot-
strap > 50). This step was implemented to make sure that the dif-
ferences we observed in topologies (see below) were due to the
amount of missing data for each parameter (ML;MF and NC) and
not simply to low branch support that is likely to lead to different
topologies. On these selected simulations, we used the fast
bootstrap algorithm and performed 1000 bootstraps for each tree
inference to assess topological support (Pattengale et al., 2010).
Using these parameters took �8 CPU years to build 50 sets of
125 bootstrapped Maximum Likelihood trees (2.30 GHz clock
speed nodes). We performed this procedure to increase the
resolution of our resulting trees.
2.3.2. Bayesian inference
The ‘‘best” tree and the ‘‘missing-data” trees were inferred using

MrBayes v. 3.2.1 (Ronquist et al., 2012b). We partitioned the data
to treat the molecular part as a non-codon DNA partition and the
morphological part as a multi-state morphological partition. The
molecular evolutionary history was inferred using the HKY model
with a transition/transversion ratio of two (Douady et al., 2003)
and a gamma distribution for the rate variation with four distinct
categories (HKY + C4). For the morphological data, we used the
Mkvmodel (Lewis, 2001), with equal state frequency and a unique
overall substitution rate (l) with four distinct rates categories
(Mkv + C4). Note that MrBayes automatically corrects for acquisi-
tion bias in the morphological data partition (Nylander et al.,
2004; Ronquist et al., 2012b). We chose these models to be consis-
tent with the parameters used to generate the ‘‘complete” matrix.

Each Bayesian tree was estimated using two runs of four chains
each for a maximum of 5� 107 generations. For each estimation,
we used the ‘‘true” tree’s topology as a starting tree (with a starting
value for each branch length of one). We used a fixed starting tree
rather than a random starting tree (default MrBayes; Ronquist
et al., 2012b) to speed up our Bayesian inferences. Note that a start-
ing tree is not a Bayesian prior on topology per se and using a fixed
starting tree did not significantly affect topology compared to using
random starting trees (see Appendix A, section ‘‘Effect of the start-
ing tree on Bayesian inference”). We also used two priors on the
molecular part of the matrix: an exponential prior on the shape of
the gamma distribution of a = 0.5, and a transition/transversion
ratio prior of two sampled from a strong beta distribution (b(80,
40)); and one prior on the morphological part of the matrix (expo-
nential prior on the shape of the gamma distribution of a = 0.5). We
used these priors to speed up the Bayesian estimation process.
These priors biased the way the Bayesian process calculated branch
lengths by giving non-random starting points and boundaries for
parameter estimation however, here we are focusing on the effect
of missing data on tree topology and not branch lengths. Even using
these priors, it took 140 CPU years to build 50 sets of 125 Bayesian
trees (2.30 GHz clock speed nodes). The detailed MrBayes parame-
ters are available in Appendix A. We also included an analysis
showing the effect of missing data on the estimation of the shape
parameter (a) of the morphological substitution rate distribution.
This extra analysis, however, is beyond the scope of this paper so
the results are not discussed further here.

We used the average standard deviation of split frequencies
(ASDS) as a proxy to estimate the convergence of the chains and
used a stop rule when the ASDS went below 0.01 (Ronquist et al.,
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2012b). We also checked the effective sample size (ESS) on a ran-
dom sub-sample of runs in each simulation to ensure that ESS
�200 (Drummond et al., 2006). Finally we built a strict majority
rule Bayesian consensus tree from the combined chains, excluding
the 25% first iterations as burn-in (Ronquist et al., 2012b).
2.4. Comparing topologies

We compared the topology of the ‘‘missing-data” trees to the
‘‘best” tree to measure the effect of the three parameters ML;MF

and NC on tree topology. We used the Robinson–Foulds distance
(Robinson and Foulds, 1981) to assess the number of conserved
clade positions and the Triplets distance (Dobson, 1975) to assess
the number of wildcard taxa (i.e. taxa that frequently change posi-
tion in different trees Kearney, 2002). We used these two metrics
because they illustrate two different aspects of tree topology (see
Discussion) but also because their performance in measuring dif-
ferences in topology is well described (Kuhner and Yamato,
2015) and well implemented (Bogdanowicz et al., 2012). We nor-
malised both metrics using methods described in Bogdanowicz
et al. (2012) to generalise our results for any n number of taxa.
These metrics are described in detail below.
2.4.1. Robinson–Foulds distance
The Robinson–Foulds distance (Robinson and Foulds, 1981), or

‘‘path difference”, measures the difference between the number
of clades and twice the number of shared clades across two trees.
The metric reflects the distance between the distributions of tips
among clades in the two trees (Robinson and Foulds, 1981; see
Appendix B for calculation details). This metric is bounded
between zero, when the two trees are identical, and 2ðn� 2Þ (for
two trees with n taxa) when there is no shared clade in the two
trees. This metric is sensitive to minor changes in clade conserva-
tion: if the trees are composed of two clades of three taxa (((a, b),
c), ((d, e), f)), the swapping of any two taxa will lead to a maximal
score of the Robinson–Foulds distance indicating poor tree similar-
ity. We normalised this metric following Bogdanowicz’s Nor-
malised Tree Similarity (NTS) method (Bogdanowicz et al., 2012).
This method scales any tree comparison metric using the mean dis-
tance between 1000 random trees (see Appendix B for the calcula-
tion details). This method is a generalisation of the topological
accuracy method (Price et al., 2010) allowing to compare topolog-
ical differences between any tree with any tree comparison metric.
In practice when the Normalised Robinson–Foulds metric between
two trees is equal to one, the trees are identical; if the metric is
equal to zero, the trees are no more different than expected by
chance; finally if the metric is less than zero, the trees are more dif-
ferent than expected by chance. Note that once rescaled, the Nor-
malised Robinson–Foulds metric is a measure of similarity, rather
than of distance like the original Robinson–Foulds metric.
2.4.2. Triplets distance
The Triplets distance (Dobson, 1975) measures the number of

sub-trees made up of three taxa that differ between two trees
(Critchlow et al., 1996; see Appendix B for calculation details). This
metric measures the position of each taxon and clade in relation to
its closest neighbours. It is bounded between zero when the two

trees are identical and n
3

� �
(for two trees with n taxa) when there

is no shared taxa/clade position in the two trees. Therefore this
metric is sensitive to the conservation of wildcard taxa. We nor-
malised this metric in the same way as for the Robinson–Foulds
distance resulting in the Normalised Triplets metric.
2.4.3. Paired tree comparisons
For the Maximum Likelihood and Bayesian consensus trees we

performed pairwise comparisons between the ‘‘best” tree and each
‘‘missing-data” tree using both the Normalised Robinson–Foulds
and Normalised Triplets metrics with the TreeCmp java script
(Bogdanowicz et al., 2012) resulting in 125 Normalised Robin-
son–Foulds metrics and 125 Normalised Triplets metric for each
tree inference method. Also, to take into account the uncertainty
of tree inference, we extracted 1000 random bootstrapped trees
from the Maximum Likelihood analysis and 1000 trees from the
posterior tree distribution of the Bayesian analysis for the ‘‘best”
trees, and then did the same for the 125 ‘‘missing data” trees
(resulting in 1000 ‘‘best” trees and 125� 1000 ‘‘missing data”
trees). For a given set of 1000 ‘‘missing data” trees and the 1000
‘‘best” trees, we sampled one ‘‘missing data” tree and one ‘‘best”
tree at random and compared them using both the Normalised
Robinson–Foulds and Normalised Triplets metrics as described
above. We repeated this 1000 times for each set of ‘‘missing data”
trees resulting in 125� 1000 values for each metric. We repeated
all the paired tree comparisons described above for each of the
50 simulation runs. We then calculated the mode and the 50%
and 95% confidence intervals from the resulting distribution using
the hdrcde R package v. 3.1 (Hyndman et al., 2013).
2.5. Testing the effects of the missing data parameters on topological
recovery

Finally, we tested the effects of our missing data parameters
(ML;MF ;NC and their interactions) on our ability to recover the
‘‘best” tree topology in a Total Evidence framework. We also
assessed the effect of our missing data parameters jointly with
the effects of different tree inference and uncertainty methods (i.
e. Maximum Likelihood, Bayesian consensus, Maximum Likelihood
bootstrap trees and Bayesian posterior tree distribution).

We measured similarities among the distributions of the
different metrics scores (Normalised Robinson–Foulds and
Normalised Triplets metric) using the Bhattacharyya Coefficient
(Bhattacharyya, 1943). The Bhattacharyya Coefficient is the proba-
bility of overlap between two distributions bounded between 0 (no
overlap) and 1 (full overlap; Bhattacharyya, 1943, see Appendix B
for calculation details). Note that this is comparable to performing
a two-sided t-test, but we use the Bhattacharyya Coefficient here
because we are comparing whole distributions not just their
means. When the Bhattacharyya Coefficient between two distribu-
tions is <0.05, the distributions are significantly different. When
this coefficient is >0.95, the distributions are significantly similar.
Values between these two thresholds show the probability of over-
lap between the distributions but do not allow us to define the sig-
nificance of the similarity or differences between distributions. To
assess the effect of our missing data parameters, we calculated the
Bhattacharyya Coefficient between the distributions of the differ-
ent metrics scores (Normalised Robinson–Foulds and Normalised
Triplets metric) for each pairwise combination of missing data
parameters (ML;MF ;NC) and parameter states (0%, 10%, 25%, 50%,
75% and 100, 90, 75, 50, 25 characters), i.e. ML ¼ 0%, MF ¼ 0%,
NC ¼ 100; ML ¼ 10%, MF ¼ 0%, NC ¼ 100, etc. (see Fig. 2 for more
details). This resulted in 7875 pairwise comparisons (a triangular
matrix with 35 � 35 cells). We performed this procedure separately
for each tree inference and uncertainty method. When two combi-
nations of missing data parameters have a similar ability to recover
the ‘‘best” tree topology the Bhattacharyya Coefficient will be close
to one. Conversely, if the two combinations of missing data param-
eters differ, the Bhattacharyya Coefficient will be close to zero.
Because of the difficulties in representing so many pairwise com-
parisons in a meaningful way, we summarised these results as a
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heat map of Bhattacharyya Coefficients (see Fig. 6). In this type of
figure, parameters that have similar effects on recovering the
‘‘best” topology (either positive or negative effects) will be denoted
by similar colour patches in the heat map representation of these
comparisons (see Fig. 6).

To assess the effect of the different tree inference and uncer-
tainty methods (i.e. Maximum Likelihood, Bayesian consensus,
Maximum Likelihood bootstrap trees and Bayesian posterior tree
distribution) on our ability to recover the ‘‘best” tree topology, we
calculated the Bhattacharyya Coefficient between the distributions
of the different metrics scores (Normalised Robinson–Foulds and
Normalised Triplets metric) for each pairwise combination of tree
inference and uncertainty methods, i.e. Maximum Likelihood vs.
Bayesian consensus; Maximum Likelihood vs.Maximum Likelihood
bootstrap trees, etc. (see Fig. 3 for more details). Note that this pro-
cedure pools results from across all missing data parameter combi-
nations so it results in just six pairwise comparisons.When two tree
inference or uncertainty methods have a similar ability to recover
the ‘‘best” tree topology the Bhattacharyya Coefficient will be close
to one. Conversely, if the two tree inference or uncertaintymethods
differ, the Bhattacharyya Coefficient will be close to zero.
3. Results

As the amount of missing data in the morphological part of
the Total Evidence matrix increases, our ability to recover the
‘‘best” tree topology decreases, regardless of the missing data
parameter (ML;MF or NC), the tree inference method (Maximum
Likelihood or Bayesian) or the tree comparison metric used
(Normalised Robinson–Foulds or Normalised Triplets metric).
Nonetheless, the different missing data parameters and tree
inference methods do not affect the topology in the same way
(Figs. 4 and 5).
Topological similarity
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3.1. Individual effects of missing data parameters

As the amount of missing data increases across all three
parameters, our ability to recover the ‘‘best” tree topology
decreases (Fig. 4). The Normalised Robinson–Foulds metric is
always lower for the Maximum Likelihood trees than for the
Bayesian consensus trees (median Bhattacharrya Coefficient = 0.69,
0.48 and 0.66 for ML;MF and NC respectively; Fig. 4; Tables C5, C6
and C7 in Appendix C). The Normalised Triplets metric, however, is
similar when comparing the Maximum Likelihood trees and the
Bayesian consensus trees for all the parameters (ML;MF and NC)
(median Bhattacharrya Coefficient = 0.84, 0.75 and 0.80 for
ML;MF and NC respectively; Fig. 4; Tables C5, C6 and C7 in
Appendix C).

3.2. Combined effect of missing data parameters

As expected, our ability to recover the ‘‘best” tree topology is
worst when each parameter contains the maximum amount of
missing data (i.e. ML ¼ 75%, MF ¼ 75% and NC ¼ 75%), and best
when there is no missing data (i.e. ML ¼ 0%, MF ¼ 0%, NC ¼ 0%;
Fig. 5; Tables C2, C3 and C4 in Appendix C). Fig. 6 shows the
similarity of distributions of tree metrics in a triangular matrix
with the values of each pairwise Bhattacharyya Coefficient
coloured according to their values (orange when the distributions
overlap completely, Bhattacharyya Coefficient = 1, and blue when
they do not, Bhattacharyya Coefficient = 0).
Using both Normalised Robinson–Foulds and Normalised Tri-
plets metrics from the Bayesian consensus trees, the parameter
combination with no missing data (i.e. ML ¼ 0%, MF ¼ 0%,
NC ¼ 100) is always the most dissimilar to all the other parameter
combinations (thin deep blue line at the base of Fig. 6). The
Normalised Robinson–Foulds metric (median Bhattacharrya
coefficient = 0.79; blue regions in Fig. 6A), however, displays more
dissimilarities than the Normalised Triplets metric (median
Bhattacharrya coefficient = 0.81; blue regions in Fig. 6B). The
orange upper triangle in Fig. 6A shows a high probability of overlap
of the Normalised Robinson–Foulds metric for the trees with the
ML parameterP 50% (Fig. 6A). Once ML P 50%, there is no addi-
tional effect ofMF and NC , regardless of the amount of missing data
in these parameters (Fig. 6A). Likewise, once NC < 50, there is no
additional effect of ML and MF as denoted by the high probability
of Normalised Robinson–Foulds metric overlap (horizontal orange
stripes between the blue regions Fig. 6A). In Fig. 5 for the
Normalised Robinson–Foulds metric, this can be interpreted as
the overlap between the distributions once ML ¼ 50%.

For all combinations of missing data parameters and tree
comparison metrics, the Maximum Likelihood bootstrap trees
and the Bayesian posterior tree distributions perform very
similarly (median Bhattacharrya Coefficient = 0.85 and 0.98, using
Normalised Robinson–Foulds metric or Normalised Triplets metric
respectively; Table 1). These two methods, however, perform
worse than the Bayesian consensus trees using Normalised
Robinson–Foulds metric (median Bhattacharrya Coefficient = 0
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Fig. 6. The effects of missing data on topological recovery using Bayesian consensus trees. Both axes show the percentage of missing data from 0% (white) to 75% (black) for
the three parameters: ML (upper line), MF (middle line) and NC (lower line). The topological recovery is measured as (A) the Normalised Robinson–Foulds metric and (B) the
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the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 1
Bhattacharyya Coefficients of the pairwise method comparisons. Each line summarises the probabilities of overlap between the distributions of the ‘‘best” tree vs. trees from each
inference method (Maximum Likelihood; Bayesian consensus; Maximum Likelihood Bootstraps and Bayesian posterior trees) pooled across all combinations of missing data
parameter values, using the Normalised Robinson–Foulds (RF) and Triplets (Tr) metrics. Values highlighted in bold are the extreme values of high or low probability of overlap
between two methods. If two methods have a high probability of overlap, they have a similar ability to recover the ‘‘correct” tree topology. Values >0.95 denote significantly
similar distributions and values <0.05 denote significantly different distributions.

Comparison Metric Min. 1st Qu. Median Mean 3rd Qu. Max.

Maximum Likelihood vs. Bayesian consensus RF 0.00 0.00 0.10 0.20 0.32 1.00
Tr 0.34 0.49 0.61 0.62 0.75 1.00

Maximum Likelihood vs. Maximum Likelihood bootstraps RF 0.03 0.54 0.69 0.64 0.77 0.98
Tr 0.08 0.57 0.65 0.64 0.73 0.82

Maximum Likelihood vs. Bayesian posterior trees RF 0.02 0.74 0.80 0.79 0.89 0.98
Tr 0.21 0.67 0.73 0.72 0.77 0.84

Bayesian consensus vs. Maximum Likelihood bootstraps RF 0.00 0.00 0.00 0.01 0.01 0.04
Tr 0.08 0.38 0.59 0.57 0.73 0.84

Bayesian consensus vs. Bayesian posterior trees RF 0.00 0.00 0.01 0.02 0.04 0.11
Tr 0.21 0.36 0.56 0.55 0.74 0.87

Bayesian posterior tree vs. Maximum Likelihood bootstraps RF 0.50 0.77 0.85 0.85 0.96 1.00
Tr 0.91 0.96 0.98 0.97 0.99 1.00
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and 0.01, for the Maximum Likelihood bootstrap trees and the
Bayesian posterior tree distribution respectively; Table 1; Fig. 4
and Fig. C2 in Appendix C).

4. Discussion

Our results show that the ability to recover the ‘‘best” tree
topology in a Total Evidence framework decreases as the amount
of missing data increases, regardless of how data were removed
or the method of tree inference used. These factors, however,
affected topological recovery in different ways and to different
extents. Decreasing the number of living taxa with morphological
data (ML) and the overall number of morphological characters in
the matrix (NC) had worst effects on topological recovery (Fig. 6).
Additionally, using Bayesian consensus trees recovered the ‘‘best”
tree topology more consistently than using Maximum Likelihood
trees or Bayesian posterior tree distributions (Figs. 5 and 6, Table 1).
As seen in previous studies, our results show that the amount of
missing data are not a problem per se for Total Evidence methods,
as long as enough living and fossil taxa in the matrix have data for
overlapping morphological characters (e.g. Kearney, 2002; Wiens,
2003; Roure and Philippe, 2011; Pattinson et al., 2014).

4.1. Individual effects of missing data parameters

4.1.1. Missing data for living taxa (ML)
When the number of living taxa with morphological data (ML)

decreases, entire rows of data are being removed from the living
taxa part of the matrix. Because living taxa still have molecular
characters available for phylogenetic inference (see Methods), even
if they have no morphological data, the relationships among them
will always be fairly well-resolved (depending on the phylogenetic
signal from the molecular part of the matrix). This missing data
parameter, however, has a huge influence on the placement of
fossil taxa because a decrease in the ML parameter reduces the
amount of overlapping data among the living and fossil taxa,
meaning there is no part of the living taxa tree that the fossils
can branch off.

4.1.2. Missing data for fossil taxa (MF)
When the overall proportion of data for the fossil taxa (MF)

decreases, this also reduces the probability of morphological
characters for fossil taxa overlapping with the ones for living taxa.
This can lead to difficulties for the placement of certain taxa in the
tree. It is important, however, to note that even though the number
of displaced wildcard taxa increases (i.e. decrease of Normalised
Triplets metric) with increasing missing data in this parameter,
clade conservation (i.e. Normalised Robinson–Foulds metric) is still
relatively good (mode = 0.72) when the proportion of missing data
are high (MF = 75%). These results are in agreement with Manos
et al. (2007) where as few as 16 characters were sufficient for
correctly assigning artificial fossils to their correct clade.

The effect of the missing data in the fossil record (MF) is less
than the effect of the ML parameter on clade conservation
(Normalised Robinson–Foulds metric) but greater on the displace-
ment of wildcard taxa (Normalised Triplets metric; Figs. 4 and 5).
This is related to the fact that the Bayesian consensus tree is built
using a majority consensus rule. When the fossil taxa have less
data (e.g. MF = 75%) they will tend to branch with any taxa in the
clade that shares most characters with the fossils. Therefore a
majority consensus position is unlikely to exist (i.e. every branch-
ing position is represented in <50% of the trees in the Bayesian pos-
terior distribution) and the fossil taxa will form a polytomy at the
base of the clade. In this case, the Normalised Robinson–Foulds
metric will decrease when the fossil is present near the tips but
affects the clade conservation less when fossils are near the root.
Conversely, because a fossil in a high taxonomic level clade has
many chances to branch on different nodes within the clade, it will
be more likely to act as a wildcard taxon and decrease the
Normalised Triplets metric. Therefore, the MF parameter is likely
to affect the Normalised Robinson–Foulds metric less than the
Normalised Triplets metric for the Bayesian consensus trees.
Conversely, the same scenario in a Maximum Likelihood frame-
work will lead to a dichotomous branching of the fossils but with
low bootstrap support (<50). In other words, the Bayesian consen-
sus tree allows a fossil taxon with few data to be placed with a
higher confidence at a lower taxonomic level than the Maximum
Likelihood tree, where the fossil will be placed with lower
confidence at a higher taxonomic level. We argue that using the
Bayesian consensus tree topology is preferable because it is more
conservative (e.g. Pattinson et al., 2014).
4.1.3. Number of morphological characters (NC)
Reducing the overall number of morphological characters

reduces the probability of their overlap among the taxa in the
matrix, and therefore decreases our ability to recover the ‘‘best” tree
topology. We expected the decrease in this parameter to have an
effect twice as large as that for the ML and MF parameters, because
removing 10% of the data for the fossil or living taxa only removes
5% of data from the whole matrix (because this parameter affects
only half of the taxa present in the matrix). Conversely, removing
10% of morphological characters (i.e. NC ¼ 90) genuinely removes
10% of data in the matrix. Nonetheless, the effect of removing char-
acters on the ability to recover the ‘‘best” tree topology is of the
same order of magnitude as for the other two parameters (Fig. 4).
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We suspect this again reflects the importance of overlapping char-
acters, as opposed to the number of characters per se.

Additionally, the number of morphological characters
determines the size of the matrix. This can affect our ability to
recover the ‘‘best” tree topology through: (1) the incongruence of
phylogenetic signal among morphological and molecular data;
and/or (2) homoplasy. The incongruence of phylogenetic signal
between morphological and molecular data has previously been
demonstrated to be more important in small morphological matri-
ces (Bremer and Struwe, 1992; Patterson et al., 1993; see Masters
and Brothers, 2002 for an empirical example). The sizes of our data
matrices were constrained by the performance of our protocol: to
reduce the computational time of our analysis to a reasonable level
(150 CPU years), we ran our simulations on modestly-sized
matrices of 1000 molecular characters and 100 morphological
characters. Therefore, part of the decrease of the Normalised
Robinson–Foulds metric and the Normalised Triplets metric in
our simulations could be due to conflicting phylogenetic signal
among morphological and molecular data in our matrices (Figs. 4
and 5). Although these matrices are an order of magnitude smaller
than some published matrices (e.g. Springer et al., 2012; Ni et al.,
2013), they are still within the size range of more modestly-sized
empirical matrices (e.g. Kelly et al., 2014; Sallam et al., 2011).
Therefore, our simulations reflect realistic parameters. Nonetheless,
the use of probabilistic methods (i.e. Maximum Likelihood or
Bayesian) and the Mkv model (Lewis, 2001) has been previously
demonstrated to partially resolve this issue (Wright and Hillis, 2014).

4.2. Combined effect of missing data parameters

As expected, when combining the missing data parameters, our
ability to recover the ‘‘best” tree topology is affected in the same
way as for the parameters individually: the Normalised Robin-
son–Foulds metric and the Normalised Triplets metric are higher
when all the missing data parameters have few missing data (i.e.
ML ¼ 0%, MF ¼ 0%, NC ¼ 100) and lower when they have a larger
proportion of missing data (i.e. ML ¼ 75%, MF ¼ 75% and
NC ¼ 25; Fig. 5). It is important, however, to notice that the effect
of each parameter is not additive. Surprisingly, the number of
missing living taxa with morphological data (ML) and the overall
number of missing morphological characters (NC), have a bigger
effect than the amount of missing data for the fossil taxa (MF).
For any additional missing living taxa with morphological data
(ML) beyond 50%, there is no difference among trees with any
combination of the other parameters (MF and NC; Fig. 6). In other
words, when the number of missing living taxa reaches 50%, nei-
ther the amount of missing data in the fossil record (MF), nor the
number of characters in the matrix (NC) affect topology. A similar
effect can be observed when the NC parameter reaches 50 charac-
ters (Fig. 6). This has important practical implications, especially
for the best strategy to improve topology by collecting more
morphological data (see below).

4.3. Effects of tree inference methods

Variation in our ability to recover the ‘‘best” tree topology
depends heavily on the tree inference method (Figs. 4 and 5). For
morphological data, previous studies have shown some superiority
of probabilistic tree inference methods with simple evolutionary
models such as the Mkv model (Lewis, 2001) over parsimony
methods (Wright and Hillis, 2014; but see Spencer and Wilberg,
2013). This is, however, the first study, to our knowledge, to com-
pare the performance of the Mkv model (Lewis, 2001) for recover-
ing the ‘‘best” tree topology using Maximum Likelihood and
Bayesian methods in a Total Evidence framework. Our results show
that the topology of the Bayesian consensus tree is always closer to
the ‘‘best” tree topology than the ‘‘best” Maximum Likelihood tree
(Fig. 5). Note that the methodological choice of using the ‘‘true”
tree as a starting tree for the Bayesian Inference rather than a
random starting tree (see Methods), had no significant effect on
topological recovery (see Appendix A, section ‘‘Effect of the starting
tree on Bayesian inference” for details). As described above, this is
because the Bayesian consensus tree allows a fossil taxon with few
data to be placed with a higher confidence at a lower taxonomic
level than the Maximum Likelihood tree. This may also be because
the ‘‘best” Bayesian consensus trees are not completely resolved,
thus will always be more similar to the ‘‘missing data” trees than
a completely resolved tree like the ‘‘best” Maximum Likelihood
tree. Nonetheless, we minimised the probability of unresolved
‘‘best” trees in our Bayesian analyses by only using datasets with
strong phylogenetic signal (see Section 2).

The Bayesian consensus trees, however, perform poorly for the
Normalised Triplets metric: some parameter combinations, espe-
cially when the MF parameter reaches 75% missing data, lead to
negative values (Fig. 5). A Normalised Triplets metric value below
0 means that the placement of some taxa is worse than expected
by just randomly placing this taxon in the tree. This can be inter-
preted as the absence of comparable triplets between some of the
‘‘missing data” trees and ‘‘best” trees. Even if clades are conserved
(Fig. 5), the resolution within them can be poor to non-existent
when a large proportion of data are missing (i.e. 75%). In such cases,
the fossil taxa are equally likely to be placed in any of the clades that
they share the most characters with. These results are in agreement
with previous studies that have showed thatmissing data can cause
problems for recovering ‘‘correct” topologies, especially for small
matrices of 100 characters (Wiens, 2003). It is important to note,
however, that this effect can be reduced by increasing the number
of characters (Wiens, 2003).

It is also worth noting that across all our analyses, the topolo-
gies of the Maximum Likelihood bootstrap trees and the Bayesian
posterior trees distribution were always further from the ‘‘best”
tree topology than Maximum Likelihood and Bayesian consensus
trees. This was true even when no morphological data were miss-
ing (ML ¼ 0%; MF ¼ 0%, NC ¼ 100; Fig. 4). This reflects the fact that
it is difficult to compare two distributions of trees, and each com-
parison between a set of ‘‘missing data” trees and a set of the ‘‘best”
trees involved 1000 random pairwise comparisons rather than just
one. Additionally, the Bayesian posterior trees performed more
poorly than the Bayesian consensus tree (Fig. 4, Table 1 and Appen-
dix C Fig. C5 and Tables C5, C6 and C7). This may be because the
Bayesian posterior trees are always resolved and thus more likely
to contain incorrectly resolved nodes (i.e. decreasing the
Normalised Robinson–Foulds metric). Conversely, the Bayesian
consensus trees might not resolve nodes that are poorly supported
and thus are more likely to contain only correctly resolved nodes (i.
e. increasing the Normalised Robinson–Foulds metric).

4.4. Practical implications

Our missing data parameters illustrate different sources of
missing data in empirical matrices as follows: (ML) the paucity of
coded morphological characters for living taxa; (MF) the missing
data for fossils (or parts of fossils) that have not been preserved
in the fossil record; and (NC) characters that have not been coded
across living and fossil species, perhaps due to difficulties in coding
or poor preservation of the feature in collections. Filling these gaps
in empirical Total Evidence matrices should lead to a substantial
increase in our ability to recover the ‘‘best” tree topology. We
can increase the number of living taxa with coded morphological
characters by increasing research efforts in this area, and encour-
aging use of our vast natural history collections. Increasing data
for fossil species is harder, since it depends on fossil preservation
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biases and new fossil discoveries. Gaps in the matrix, however, can
be filled with efforts in palaeontological field work that can poten-
tially lead to future discoveries of exceptionally preserved fossils
(e.g. Ni et al., 2013). Fortunately, although these data are the most
difficult to collect, they also have the least influence on whether
our simulations recover the ‘‘best” tree topology (Fig. 6). Finally,
although increasing the number of coded characters is relatively
straightforward, the amount of time it takes to build a morpholog-
ical matrix increases directly with the number of characters
involved. One solution to this problem may be to engage with
collaborative data collection projects through web portals such as
MorphoBank (O’Leary and Kaufman, 2011), so that no single
individual collects all the data.

Another practical implication of our results regards the tree
inference methods. Because the Bayesian consensus trees
consistently recovered topologies closer to the ‘‘best” tree topology
than the Maximum Likelihood trees, we advise that where a topo-
logical constraint is needed, Bayesian consensus trees should be
used. This may apply to tree inferences using the Total Evidence
method such as tip-dating (e.g. Ronquist et al., 2012a; Wood
et al., 2013; Matzke, 2014). It is, however, possible that including
dating information during tree inference could also improve the
accuracy of the Bayesian posterior tree distribution, so a fixed
topology should be used with caution. Using the Bayesian consen-
sus tree rather than the Maximum Likelihood can also reduce the
number of false positive topologies (sensu Swofford et al., 2001).
As shown in Fig. 5 and discussed in the section above (Effects of
tree inference methods), the Bayesian consensus tree is more likely
to not resolve poorly supported nodes due to missing data than the
Maximum Likelihood tree that is more likely to incorrectly resolve
such nodes (i.e. creating a false positive node). Note, however, that
we do not suggest discarding the Bayesian posterior tree distribu-
tions even though they performed poorly in recovering the ‘‘best”
tree topology in our simulations (this can probably be traced to
the difficulties comparing distributions of trees; see above). These
trees will be invaluable for phylogenetic comparative analyses. For
example a sub-sample of posterior tree distributions can be used to
assess macroecological questions while better taking into account
topological uncertainty (e.g. Fritz et al., 2013 and Jetz et al., 2012
used in Healy et al., 2014).

5. Conclusions

Previous studies have explored the effect of missing morpholog-
ical data in Total Evidence matrices (Wiens et al., 2005; Manos
et al., 2007; Pattinson et al., 2014). The conclusions of theses
studies, however, were limited by their empirical approach making
their results applicable only to similar missing data scenarios.
Additionally, these studies focused either only on living taxa
(Wiens et al., 2005) or on the patterns of missing data from the fos-
sil record only (Manos et al., 2007; Pattinson et al., 2014). Here we
instead used an approach where missing data were generated from
simulated data and according to three clearly defined missing-data
parameters (ML;MF or NC) that removed data from both the living
and fossil taxa. This allowed us to confirm previous results that
missing data can be especially problematic in small matrices
(Wiens, 2003), but also revealed the crucial importance of coding
morphological data for living species in Total Evidence phyloge-
nies. Missing data in Total Evidence matrices is not a problem for
recovering the ‘‘best” tree topology as long as enough living and
fossil taxa in the matrix have data for overlapping morphological
characters. When missing data increases in any of our missing data
parameters (ML;MF or NC), it reduces support for the placement
of fossil taxa and increases the displacement of wildcard taxa.
Therefore we advise increased focus on coding morphological
characters for a large number of the living taxa present in the
matrix (i.e. at least 50%) if the goal is to accurately combine both
living and fossil species in phylogenies. Doing so will increase over-
lap of morphological characters among living and fossil taxa,
allowing the fossil taxa to be positioned relative to the living taxa
based on their shared derived characters rather than simply on avail-
able data.

Additionally, the topologies of the Bayesian consensus trees,
regardless of the amount of missing data, were always closer to
the ‘‘best” tree topology than the Maximum Likelihood trees. This
has also been observed in empirical data (e.g. Arcila et al., 2015)
where Maximum Likelihood trees inferred from a Total Evidence
matrix were less supported than the Bayesian consensus tree. This
might have an important impact on estimating topologies in the
Total Evidence framework, because previous studies had to rely
either on molecular scaffolds (e.g. Slater, 2013), taxonomic con-
straints (e.g. Slater, 2013; Beck and Lee, 2014) or even on fixing
the topology (e.g. Ronquist et al., 2012a). Therefore, we suggest
extracting such topological backbones from the Bayesian consen-
sus tree if needed.
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