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abstract: We present a new phylogenetic comparative method—
phylogenetic analysis of covariance (PANCOVA)—that uses inter-
specific data and a phylogeny to estimate the effects of major events
on both the rate of phenotypic evolution and the association between
traits. It could be used, for example, to model the impact of a key in-
novation, colonization of a new habitat, or environmental change.
The approach is optimized with maximum likelihood and is formulated
under the familiar phylogenetic generalized least squares framework,
which is flexible and easily extended to incorporate other factors and
parameters. As an example, we explore the relationship between paren-
tal investment and relative telencephalon size in birds and contrast the
results of PANCOVA with those from other phylogenetic comparative
methods.

Keywords: analysis of covariance, birds, evolutionary rates, maximum
likelihood, phylogenetic comparative methods, phylogenetic general-
ized least squares.

Introduction

Major evolutionary forces that lead to bursts of phenotypic
diversification (e.g., key innovation, colonization of a new
habitat, environmental change) may also lead to changes in
the relationships between diversifying traits. Many factors in-
cluding colonization of coral reefs (Price et al. 2011), evolu-
tion of piscivory (Collar et al. 2009), and changes in pollina-
tors (Roalson and Roberts 2016) have recently been proposed
as forces driving major changes in the rate of phenotypic
diversification. We might expect such forces to also lead to
major changes in the relationships between diversifying traits
such as limb proportions (Polly 2010), brain-to-body-size ra-
tios (Finarelli and Flynn 2009), or relative metabolic rates
(Santos and Cannatella 2011). We can apply phylogenetic
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comparativemethods to data from extant species to infer ma-
jor shifts in diversification rate (O’Meara et al. 2006; Thomas
et al. 2006) or in the relationships between traits (Felsenstein
1985; Martins and Hansen 1997). Here, we propose a phylo-
genetic comparativemethod that infers the impact of a single
factor on both diversification rates and phenotypic relation-
ships simultaneously.
Our method could be applied, for example, to the ques-

tion of brain size evolution. The evolution of sociality and
the high cognitive demands of social living have often been
suggested as drivers of the evolution of large vertebrate brains
(Dunbar 1992; Shultz and Dunbar 2006; Pérez-Barbería et al.
2007). Although group size is not always a good predictor of
relative brain size (Beauchamp and Fernández-Juricic 2004),
more precise measures of social cohesion, such as the amount
of biparental care, appear to be associated with the relative
size of specific brain regions, at least in birds (Shultz andDun-
bar 2010).Wemay also want to askmore specifically whether
the gain of sociality was a type of key innovation, leading to
an overall increase in brain size disparity. In addition, evo-
lutionary changes in sociality may lead to shifts in the relative
size or allometry of particular brain regions, especially in re-
gions involved in cognitive processing such as the telenceph-
alon. Ideally, we would ask both questions simultaneously,
thereby also determining which pattern was a better descrip-
tor of the relationship between sociality and brain size across
long periods of evolutionary time.
Several phylogenetic comparative methods have been de-

veloped to address the first question about phenotypic diver-
sification rates in a single, continuous, trait. Early approaches
focused on estimating the phenotypic variance among species
across an entire clade (e.g., Lynch 1991; Foote 1993; Martins
1994), and more recent methods offer ways to compare that
variance in different parts of a phylogeny (e.g., O’Meara et al.
2006; Thomas et al. 2006; Eastman et al. 2011). The most re-
cent approaches provide estimates using different assump-
tions about the underlying evolutionary process (Beaulieu et al.
2012) and with uncertain phylogenetic information (Eastman
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et al. 2011; Revell et al. 2012). Other methods are needed, how-
ever, when the question involves relative sizes or the relation-
ship between two or more continuous traits. For example, Re-
vell and Collar (2009) propose a method that describes the
relationship between two traits as an evolutionary rate matrix
and then tests whether that matrix shifts in different parts of
a phylogeny.

Early attempts to study relative sizes in a phylogenetic
context started by calculating simple ratios (e.g., brain size
divided by body size; Van Valkenburgh and Ruff 1987; Lin-
denfors 2006; Shultz and Dunbar 2006). However, ratios can
lead to precision and accuracy problems (Packard and Board-
man 1988, 1999; Jasieński and Bazzaz 1999). One popular al-
ternative is to regress one trait on the other (e.g., brain size [y]
on body size [x]) in a phylogenetic regression to extract re-
siduals and then to use those residuals as the new response
variable in a phylogenetic ANOVA (e.g., Garland et al. 1992;
Revell 2009; Mahler et al. 2010). Expanding this approach to
an analysis of covariance (ANCOVA) or multiple regression,
a researcher can also test for changes in the relationship be-
tween the two traits over evolutionary time (García-Berthou
2001; Freckleton 2002). Phylogenetic ANCOVAs have been
applied to interspecific data using Monte Carlo simulation
(Garland et al. 1993), phylogenetic generalized least squares
(Butler et al. 2000; Lavin et al. 2008), and adaptation-inertia
models (Escudero et al. 2012), but all of these applications as-
sume a single diversification rate across the entire phylogeny.

Here, we develop a comprehensive procedure in which
both phenotypic diversification and trait relationships can
be estimated simultaneously. Our phylogenetic ANCOVA
(PANCOVA) combines a phylogenetic generalized least
squares (PGLS) model of the relationships between two or
more traits with maximum likelihood estimates of unequal
evolutionary rates in different parts of the phylogeny. This
combination of PGLS and likelihood approaches is famil-
iar enough to encourage complex model fitting and flexible
enough to open the door to future extensions incorporating
a variety of microevolutionary assumptions and selective per-
spectives (e.g., Hansen 1997;Martins andHansen 1997; Han-
sen et al. 2008). Below, we illustrate the PANCOVA approach
(and several alternative approaches) with an example based
on the above question of whether evolutionary changes in so-
ciality drive evolutionary changes in brain size.
The PANCOVA Model

We begin with a PGLS framework that places the phylogeny
and assumptions about the rates of evolutionary change in
a complex error term (Hansen and Martins 1996; Martins
and Hansen 1997):

y p b0 1 b1x1 b2z 1 b3xz 1 ε,
ε ∼ MVN(0,V):

ð1Þ
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The primary trait of interest is given by y, a vector contain-
ing species means for the continuous response variable (e.g.,
telencephalon size). The ANCOVA is specified in the mean
structure of themodel (i.e., y p b0 1 b1x1 b2z 1 b3xz) de-
scribing how the continuous and categorical variables are
associated with each other. As in any ANCOVA, variation
in the response variable is predicted by at least two explan-
atory vectors: the covariate, z (e.g., body size), and a categor-
ical factor that codes for the critical historical event, x (e.g.,
sociality). The interaction term, xz, estimates a possible dif-
ference in the relationship between the response and covar-
iate terms (relative telencephalon size) in different parts of
the phylogeny indicated by the categorical factor (sociality).
We estimate the regression coefficients: b0 and b2 for the
global intercept and slope, as well as b1 and b3 for a possi-
ble change in the intercept or slope (respectively) for taxa
in one of the two states identified by the categorical factor.
Finally, ε is a vector of multivariate normally distributed
error terms with a mean of 0 and variance V, a matrix that
describes the expected similarities due to shared evolution
along a phylogeny.
Besides the phylogeny, the V matrix incorporates a model

of evolutionary change (Hansen and Martins 1996). Under
Felsenstein’s (1985) classic Brownian motion model of pheno-
typic evolution under neutral or simple directional selection,
the variance between any two species (i and j) is Vij p g  ta,
where g is the amount of new variation added each gen-
eration and ta is the phylogenetic distance from the root to
the most recent common ancestor of taxa i and j (Martins
and Hansen 1997). When phylogeny has little or no effect
on phenotypic variation, a nonphylogenetic approach (Mar-
tins and Garland 1991) specifies Vij p g I, where I is the
identity matrix . There are many other possibilities. For ex-
ample, when using ultrametric trees scaled to a height of
one, we can also specify Vij p l g ta 1 (12 l)I, where l is
a measure of phylogenetic signal (Pagel 1999a; Freckleton
et al. 2002; de Villemereuil et al. 2012) and is equivalent
to the phylogenetic heritability of the phylogenetic mixed
model (Housworth et al. 2004; Hansen and Orzack 2005;
Hadfield and Nakagawa 2010; Ho and Ané 2014). When
l p 0, change only happens at terminal branches, and the
model reduces to a nonphylogenetic approach; when l p 1,
evolutionary change happens at a constant rate through the
tree, and the model reduces to Brownian motion.
To also allow a possible shift in the rate of phenotypic

diversification, we apply different values of the rate con-
stant (g) to different parts of the phylogeny when construct-
ing the V matrix. First, we specify ancestral states of the cat-
egorical factor, describing the trait along each branch of the
phylogeny as being in one or the other state of that categori-
cal factor (e.g., social or nonsocial). This is comparable to the
noncensored approach of O’Meara et al. (2006).We then add
an optional parameter (g) corresponding to the proportion of
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each transitional branch that is evolving in each regime. Spe-
cifically, g p 1 indicates that the shift to the new state of the
categorical factor happened immediately after the branch-
ing event, whereas g p 0 indicates that the shift happens
only at the end of the branch, just before it splits again.

In summary, parameters for detecting unequal evolution-
ary rates under different models are embedded in the error
term (ε), whereas parameters for estimating a shift in trait
covariation are embedded in the mean structure (bs). A full
model considering the predictive value of a categorical factor
with two states would include six parameters. There are two
b parameters describing the intercept (b0) and slope (b1) of a
global regression line and one g parameter (g0) describing the
global diversification rate. Two additional b parameters (b1,
b3) estimate the additional amounts needed if the relation-
ship between y and z differs in the two parts of the phylogeny
described by the categorical factor (x). Also, a second g pa-
rameter (g1) estimates the additional variance needed to de-
scribe a change in diversification rate with the categorical fac-
tor. In addition, we include two parameters in forming the
matrix,V, fromdistances extracted from the phylogeny: g (in-
dicating at which time point along each branch the historical
shift occurs) and l (on models accounting for phylogenetic
signal).

We can estimate the likelihood of amodel containing any
subset of these parameters using the standard PGLS equation

log(L) p log
expf21=2[y2 Xb]0(V)21[y2 Xb]g

[(2p)N # det(V)]1=2

� �
, ð2Þ

where X is the design matrix with explanatory variables (for
eq. [1], the first column would be a vector of ones, followed
by x, z, and xz), b is a vector of regression coefficients (for
eq. [1], b0, b1, b2, and b3), andN is the number of extant taxa.
To estimate parameters, we optimize equation (2) using stan-
dard procedures, such as Powell’s algorithm, Markov chain
Monte Carlo, grid search, or sensitivity simulations.

A Worked Example

To illustrate the PANCOVA, we used the example ques-
tions and data developed by Shultz and Dunbar (2010) to
ask whether evolutionary shifts in sociality are linked to
changes in relative brain size and phenotypic diversification
in birds. Shultz and Dunbar (2010) acknowledged that the
tree they used for analyses was controversial, so for our ex-
ample, we worked with a pruned tree (fig. 1) from Hedges
et al. (2015) instead. The tree results from a synthesis of
studies in molecular evolution and phylogenetics report-
ing time of divergence among species (Hedges et al. 2006;
Hedges and Kumar 2009) that was used to estimate a unique
bird tree calibrated to time as described inHedges et al. (2015).
Following Shultz and Dunbar (2010), we choose a measure
of sociality (i.e., biparental care) informative of bondness and
This content downloaded from 128.1
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stable relationships, instead of the traditional flock size (e.g.,
Beauchamp and Fernández-Juricic 2004). Although most
birds exhibit biparental care, uniparental care is the ancestral
state, and there have been several reversals across all birds
(fig. 1). Our question is whether these evolutionary changes
in social behavior are associatedwith changes in relative brain
size.Wemodeled telencephalonmass as the primary response
(y), with body mass as a covariate (z) and biparental care as
a categorical indicator of sociality (x). Note that both telen-
cephalon mass and body mass were extracted from Shultz
and Dunbar (2010), where they had been log transformed.
Both data and phylogeny are deposited in the Dryad Digital
Repository: http://dx.doi.org/10.5061/dryad.2r504 (Fuentes-
G. et al. 2016).
We estimated parameters by using Powell’s (1964)method

to optimize the likelihood (eq. [2]) for three models: (1) the
full PANCOVAmodel (two intercepts, two slopes, two diver-
sification rates), (2) a simple ANCOVA with a single diver-
sification rate (two intercepts, two slopes, one diversification
rate), and (3) a simple linear regression (one intercept, one
slope, one diversification rate). For each of these models, we
estimated parameters assuming Brownian motion, no phy-
logeny, and phylogenetic signal (l) models and compared re-
sults using the second-order bias correction version of Akaike
information criterion (AICc; Akaike 1974, 1992). Following
Burnham and Anderson (2002), we considered models with
lower AICc values to have better fits and interpreted differ-
ences in AICc values (DAICc) 12 as supporting real differ-
ences betweenmodels.We performed all analyses in R (RDe-
velopment Core Team 2014) and provide the scripts as an
electronic enhancement (zip file, available online).1 For some
tasks, the scripts use existing functions available in the sup-
porting packages ape (Paradis et al. 2004), geiger (Harmon
et al. 2008), phangorn (Schliep 2011), nlme (Pinheiro et al.
2013), and ctv (Zeileis 2005).
For comparison, we also analyzed the data set under other

commonly used approaches. The first set of approaches does
not explicitly model the relationship between telencephalon
and body mass (like PANCOVA does) but starts by comput-
ing a composite variable informative of relative telencephalon
size. For these approaches, we obtained composite variables
in two ways: (1) by computing ratios dividing telencephalon
mass by bodymass and (2) by estimating size-corrected resid-
uals of a phylogenetic regression of telencephalon mass on
body mass (Revell 2009), using the R package phytools (Re-
vell 2012). We then compared the results of the below meth-
ods on these two measures of relative telencephalon size.
To test for differences in evolutionary rates of relative tel-

encephalon size, we applied O’Meara et al.’s (2006) non-
censored approach (using phytools; Revell 2012). With this
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Fringilla coelebs
Coccothraustes coccothraustes
Carduelis spinus
Carduelis cannabina
Carduelis carduelis
Loxia curvirostra
Serinus canaria
Passer domesticus
Montifringilla nivalis
Prunella modularis
Anthus pratensis
Motacilla alba
Alauda arvensis
Melanocorypha calandra
Acrocephalus scirpaceus
Regulus regulus
Delichon urbicum
Hirundo rustica
Cyanistes caeruleus
Parus major
Aegithalos caudatus
Lanius collurio
Corvus corone
Corvus frugilegus
Corvus corax
Corvus monedula
Garrulus glandarius
Pica pica
Pyrrhocorax pyrrhocorax
Troglodytes troglodytes
Certhia familiaris
Sitta europaea
Bombycilla garrulus
Sturnus vulgaris
Sturnus roseus
Turdus merula
Turdus philomelos
Erithacus rubecula
Cinclus cinclus
Muscicapa striata
Merops apiaster
Alcedo atthis
Leptoptilos crumeniferus
Ciconia ciconia
Ixobrychus minutus
Botaurus stellaris
Ardea cinerea
Ardea alba
Egretta garzetta
Picus canus
Picus viridis
Dryocopus martius
Dendrocopos major
Dendrocopos medius
Jynx torquilla
Upupa epops
Tyto alba
Athene noctua
Otus scops
Asio otus
Bubo bubo
Strix aluco
Melopsittacus undulatus
Psittacula eupatria
Agapornis fischeri
Psittacus erithacus
Amazona versicolor
Ara ararauna
Ara chloropterus
Cacatua sulphurea
Nymphicus hollandicus
Trichoglossus haematodus
Tachymarptis melba
Apus apus
Buteo buteo
Accipiter gentilis
Accipiter nisus
Aquila chrysaetos
Aegypius monachus
Pandion haliaetus
Falco tinnunculus
Crex crex
Rallus aquaticus
Porphyrio porphyrio
Gallinula chloropus
Porzana porzana
Fulica atra
Anthropoides virgo
Grus antigone
Burhinus oedicnemus
Gavia stellata
Spheniscus demersus
Philomachus pugnax
Actitis hypoleucos
Lymnocryptes minimus
Scolopax rusticola
Numenius arquata
Vanellus vanellus
Haematopus ostralegus
Fratercula arctica
Sterna hirundo
Sternula albifrons
Chroicocephalus ridibundus
Larus marinus
Larus argentatus
Phalacrocorax carbo
Pelecanus onocrotalus
Podiceps cristatus
Tachybaptus ruficollis
Phoenicopterus ruber
Cuculus canorus
Geopelia cuneata
Goura cristata
Columba livia
Columba palumbus
Streptopelia roseogrisea
Anas crecca
Anas platyrhynchos
Anas penelope
Somateria mollissima
Mergus serrator
Cygnus olor
Anser anser
Lophura nycthemera
Chrysolophus pictus
Phasianus colchicus
Pavo cristatus
Tetrao urogallus
Lyrurus tetrix
Gallus gallus
Coturnix chinensis
Coturnix coturnix
Perdix perdix
Dromaius novaehollandiae
Struthio camelus
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Phylogenetic ANCOVA 000
method, we compared the fit of a model with a single global
rate across the bird phylogeny with a model that estimates
different rates for regions of the phylogeny in which the
birds are social (biparental care) and nonsocial (uniparen-
tal). Second, we applied Thomas et al.’s (2006) approach,
which asks a similar question but allows for a shift also in
the mean relative telencephalon size between social versus
nonsocial birds. We applied this approach using the code
provided by Thomas et al. (2009). Note that both of these
approaches estimate only differences in rates of evolution-
ary diversification and do not consider changes in the re-
lationships between traits such as telencephalon and body
size. Thus, we applied both to our ratios and residual mea-
sures of relative telencephalon size.

Other methods can be used to explore changes in mean
trait values or the relationships between traits but cannot
estimate changes in diversification rates. First, we applied
a simple, nonphylogenetic ANOVA to test the predictive
effect of sociality (x) on relative telencephalon size (y; both
ratios and residuals). Second, we applied a nonphylogenetic
ANCOVA with telencephalon mass as the response vari-
able (y), bodymass as a covariate (z), and sociality (parental
investment) as the factor (x). For hypothesis tests of the
parameters estimated using these ANOVA and ANCOVA
models, we used Monte Carlo simulation procedures, gen-
erating 1,000 sets of data using the same phylogeny and a
Brownian motion model of phenotypic evolution and cre-
ating a null distribution by analyzing each simulated data
set with the sameANOVAandANCOVAprocedures (Mar-
tins and Garland 1991). We conducted all calculations in R
(R Development Core Team 2014), with the ANOVA com-
ponent as implemented in geiger (Harmon et al. 2008).

Third, we applied an ANCOVA version of the adaptation-
inertia method (Hansen 1997; Hansen et al. 2008). Under the
adaptation-inertia model, we envision species traits as evolv-
ing in a world of multiple, complex, and sometimes con-
flicting selective pressures and use an Ornstein-Uhlenbeck
(OU) model to infer the speed at which a trait responds to
a single, identified selective pressure. Here, we regressed tel-
encephalonmass (y) on the total amount of time each species
evolved in a social or nonsocial selective context (mapping
parental investment as a dichotomous trait onto the phylog-
eny). We included body mass (z) in two ways: first, as a fixed
explanatory variable (as in PANCOVA) and, second, as a trait
evolving via Brownian motion process influenced by large
unknown stochastic factors (Hansen et al. 2008). Although
This content downloaded from 128.1
All use subject to University of Chicago Press Term
use of the Brownian motion version in this case is difficult
to justify or to interpret, we include the results for the sake
of pragmatic comparison. We applied both options using the
R package SLOUCH (Pienaar 2011).
Finally, we applied Revell and Collar’s (2009) method to

estimate changes in the evolutionary rate matrix describ-
ing evolution of telencephalon size and body size between
parts of the tree characterized by the presence or absence of
biparental care, using the R package phytools (Revell 2012).
This approach is the most similar to the PANCOVA in that
it also simultaneously estimates evolutionary rates and re-
lationships, albeit in a fundamentally different way.
We also conducted limited computer simulations to ex-

plore the statistical performance of the PANCOVA method.
Specifically, we chose an arbitrary topology of 33 taxa, gen-
erated data using a Brownian motion model of phenotypic
evolution for two continuous traits, and allowed changes
in both the diversification rate of each trait and the covari-
ance between the two traits at specific points on the phy-
logeny identified by predetermined shifts in a third, categor-
ical trait. We generated 1,000 data sets for each of several
combinations of phenotypic variances and covariances and
then analyzed each using an ordinary least squares regression
(nonphylogenetic), a correlation of Felsenstein’s (1985) con-
trasts, PGLS-OU regression (Martins and Hansen 1997), and
PANCOVA. Because the relationship between the three var-
iables, and their variances and covariances, is complex, we
report here only limited results confirming that our imple-
mentation of the PANCOVA code could recover evolution-
ary parameters.
Results

Using PANCOVA, we found that evolutionary gains of
avian sociality (as indicated by shifts to biparental care) are
associated with shifts in both relative telencephalon size and
the rate of evolutionary diversification of telencephalon size
(fig. 2). The best-fitting model overall (table 1) was a full
PANCOVA showing differences in both the relationship
between telencephalon and body size (both intercepts and
slopes) and in the evolutionary rates of relative telencepha-
lon size for social versus nonsocial birds. This model also
included an estimate of l (estimating strong phylogenetic
signal, closely approaching that of Brownian motion) but
not g (the optional parameter that estimates the point along
each branch at which the changes occur did not improve
Figure 1: Pruned bird phylogeny from Hedges et al. (2015), with the most parsimonious reconstruction of biparental care (presence p gray;
absence p black), which is informative of social cohesion. In species with biparental care, both parents regularly contribute to provisioning
and/or incubation. Ancestral state estimates under maximum likelihood using a continuous-time Markov model (Pagel 1999b) are consistent
with the most parsimonious reconstruction, so only the latter is shown. Both parsimony and maximum likelihood reconstructions were con-
ducted in Mesquite (Maddison andMaddison 2011). Branch lengths are in units of expected phenotypic change (scale provided at bottom left).
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model fit). Note that because estimates of phylogenetic signal
(l) were close to one, the parameter estimates under Brown-
ian motion and phylogenetic signal models were nearly iden-
tical.

With any of the three sets of assumptions (no phylog-
eny, Brownian motion, and estimated phylogenetic signal),
bird species that have gained sociality (as indicated by bi-
parental care) exhibit a larger range of relative telencepha-
lon sizes (table 1), and the relationship between telencepha-
lon and body mass (b2) is positive and allometric (fig. 2).
For all three sets of microevolutionary assumptions, the
fit of the full PANCOVA model (with two intercepts, two
This content downloaded from 128.1
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slopes, and two rates) was better (lower AICc) than that of
the simpler ANCOVA (with two intercepts and two slopes
but only one evolutionary rate) or the simple linear regres-
sion (with one intercept, one slope, and one rate; table 1).
Thisdifferencewassubstantial (DAICc 1 2) forall threemod-
els (nonphylogenetic, Brownianmotion, and estimated phy-
logenetic signal).
With no phylogenetic signal (fig. 2A), the PANCOVA

approach detected two distinct lines with a higher intercept
(relatively larger telencephalons) for bird species that have
gained sociality (b1). Under Brownian motion and phyloge-
netic signal models (fig. 2B), the pattern was more complex
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Figure 2: Telencephalon mass is well predicted by body mass for the two categories of sociality (social p empty circles; nonsocial p filled
circles). Lines are as estimated according to the phylogenetic analysis of covariance (with two rates) models of table 1 for social (dashed line)
and nonsocial (continuous line) birds, under different evolutionary models (A, nonphylogenetic; B, Brownian motion or phylogenetic signal).
Table 1: Parameter estimates for phylogenetic ANCOVA (PANCOVA)
Intercepts
 Slopes
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Assumption, model
 b0
 b1
 b2
 b3
 g0
 g1
 l
 AICc
No phylogeny:

Simple
 22.4 (.13)
 . . .
 .6 (.02)
 . . .
 .28
 . . .
 . . .
 215.3

ANCOVA
 22.9 (.39)
 .4 (.41)
 .6 (.06)
 .1 (.06)
 .22
 . . .
 . . .
 190.9

PANCOVA
 22.9 (.22)
 .4 (.26)
 .6 (.03)
 .1 (.04)
 .07
 .18
 . . .
 182.8
Brownian motion:

Simple
 23.5 (.25)
 . . .
 .7 (.02)
 . . .
 .24
 . . .
 . . .
 54.5

ANCOVA
 23.0 (.38)
 2.5 (.31)
 .6 (.04)
 .1 (.05)
 .23
 . . .
 . . .
 54.2

PANCOVA
 23.1 (.25)
 2.4 (.22)
 .6 (.03)
 .1 (.03)
 .08
 .18
 . . .
 48.6
Phylogenetic signal:

Simple
 23.4 (.23)
 . . .
 .7 (.02)
 . . .
 .19
 . . .
 .97
 42.9

ANCOVA
 23.0 (.36)
 2.4 (.29)
 .6 (.04)
 .1 (.05)
 .19
 . . .
 .97
 43.0

PANCOVA
 23.1 (.25)
 2.4 (.22)
 .6 (.03)
 .1 (.03)
 .07
 .15
 .93
 40.0
Note: Shown are phylogenetic analysis of covariance (PANCOVA) parameter estimates for the bird example assuming no phylogeny, Brownian motion, or
an estimated phylogenetic signal. For each set of assumptions, a full PANCOVA with two intercepts, two slopes, and two rates fit better (lower corrected Akaike
information criterion [AICc]) than did simpler models including an ANCOVA (with two intercepts, two slopes, and one rate) or a simple linear regression (one
intercept, one slope, one rate). Standard errors for the regression coefficients are shown in parentheses; in all three sets of assumptions, PANCOVA produces
lower standard errors than the simpler ANCOVA. See “A Worked Example” for other details about the estimation and interpretation of model parameters.
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since the lines crossed, indicating an interaction effect (b3).
Accounting for phylogeny, we found that only larger-bodied
bird species exhibited larger telencephalon sizes with the
evolutionary gain of sociality, whereas smaller-bodied bird
species that have gained sociality actually have relatively small
telencephalons (fig. 2B). In all three cases, the full PANCOVA
models also detected an increase in the rate of evolution of
telencephalon size with the gain of sociality (the change in
evolutionary rate, g1, is more than two times the evolutionary
rate across all birds, g0).

With other methods, we found only limited evidence that
relative telencephalon size diversifiedmore quickly in social
than in nonsocial birds and completely missed the complex
interaction between relative telencephalon size and social-
ity. We found a doubling of relative telencephalon diversifi-
cation rates when using methods that estimate evolutionary
rates alone (O’Meara et al. 2006; Thomas et al. 2006), how-
ever, this difference in rates was statistically significant only
whenwe calculated evolutionary rates using ratios (not phy-
logenetic residuals; table 2). We found no suggestion that
evolutionary shifts in sociality predict relative telencepha-
lon size using phylogenetic ANOVAs with ratios (P p :7)
but a significant relationship between sociality and relative
telencephalon size when using phylogenetic ANOVAs with
residuals (P p :01). There was again no relationship when
tested with an ANCOVA with hypothesis tests conducted
in comparison to null distributions generated using Monte
Carlo simulation (b1 within 95% confidence interval; table 3).
The ANCOVA found a significant positive and allometric re-
lationship between telencephalon and body mass (b2 outside
95% confidence interval; table 3) but no difference between
slopes for social versus nonsocial species (b3 within 95% con-
fidence interval; table 3).

From a completely different perspective, the adaptation-
inertia method conveyed a similar message (table 4). Re-
gardless of how body mass was modeled (fixed or Brown-
ian motion), the estimated optimum for telencephalon mass
was higherforbirdsthathavegainedsociality(biparentalcare).
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Although there is some difference between optima for the
randomly evolving covariate model (table 4), the difference
for the best-fitting model (fixed covariate) is rather small. In
fact, there was little difference in support (DAICc ! 2) be-
tween the fixed-covariate model and an optimal regression
excluding a factor distinguishing social and nonsocial birds
(AICc p 56:9). The large phylogenetic half-life estimate for
the best-fitting model (fixed covariate) suggests that there
is phylogenetic inertia in telencephalon mass and (much like
the large estimate of l in the PANCOVA) indicates that tel-
encephalon size is tracking the phylogeny.
Using Revell and Collar’s (2009) evolutionary rate matri-

ces, we found evidence that phenotypic diversification in
telencephalon mass increased with the evolutionary gain
of sociality (biparental care; table 5). The fullmodel with dif-
ferent variances and covariances for social and nonsocial
birds had a lower AICc score (490.1) than did a model that
did not distinguish on the basis of sociality (AICc p 497:5).
This difference appeared to be due primarily to a difference
in rate estimates, because an intermediate model with dif-
ferent rates but a common correlation (AICc p 492:1) fit
almost as well as did the full model, whereas an interme-
diate model with common rates but different correlations
(AICc p 498:9) did not.
Simulations

Our analyses of computer-simulated data confirmed that,
as expected, the PANCOVA yielded the same parameter
estimates as did PGLS-OU (Martins and Hansen 1997) or
Felsenstein’s (1985) contrasts method when applied to data
generated under a Brownian motion model with no histor-
ical shifts in the mean or variance (appendix). In addition,
we found that PANCOVA successfully detected shifts in the
rate of phenotypic diversification that these other methods
were not designed to infer. For example, when we generated
data with no relationship (r p 0) between the primary re-
sponse trait and the covariate and an increase in diversifica-
Table 2: Estimates of evolutionary rates under composite variables
Approach, estimate
 Single rate
 Social
03.224.004 on O
s and Conditions
Nonsocial
ctober 23, 2016 14:48
 (http://www.journals.
Likelihood ratio
:45 PM
uchicago.edu/t-and-c).
P

O’Meara et al. 2006 (j2):

Ratios
 .10 (.010)
 .11 (.014)
 .05 (.014)
 4.72
 .03

Residuals
 .24 (.028)
 .26 (.035)
 .13 (.045)
 2.91
 .09
Thomas et al. 2006 approach (v):

Ratios
 . . .
 2.3 (1.14, 4.42)
 1.0 (.56, 2.16)
 4.71
 .03

Residuals
 . . .
 2.1 (.95, 4.13)
 1.0 (.49, 2.16)
 3.55
 .06
Note: Shown are estimates of the rate of diversification of relative telencephalon size using O’Meara et al.’s (2006) and Thomas et al.’s (2006)
approaches with the bird example. Using the O’Meara et al. (2006) method, we estimated a single evolutionary rate for the entire phylogeny (j2; in
parentheses are 1 standard error) and separate evolutionary rates for birds with and without sociality (biparental care). Using the Thomas et al. (2006)
method, parameter estimates (v; with approximate confidence intervals in parentheses) are for birds with and without sociality. For bothmethods, we
compared the fit of single- and two-rate models with likelihood ratio tests (df p 1). We present results for interspecific measures of relative telen-
cephalon size in terms of ratios and phylogenetic residuals in different rows.
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tion rate following evolutionary changes in a specified cate-
gorical trait, all of the testedmethods correctly estimated the
lack of relationship between trait of interest and covariate,
but only PANCOVA correctly inferred an increase in diver-
sification rate.

Intriguingly, when we added a larger positive relation-
ship between response and covariate (r p 0:5 or 0.9) while
retaining the increase in diversification rate, the other meth-
ods incorrectly estimated a lower relationship between re-
sponseandcovariate(r p 0),whilePANCOVAcorrectlyde-
tected both the larger slope and the increase in diversification
rate (appendix). The only case involving a serious compro-
mise in parameter estimation was when the variances of the
continuous variables were largely unequal. In particular, a
high variance in the covariate (z) diluted any relationship be-
tween the continuous variables, and therefore, slopes were
underestimated even under data simulated with high covari-
ance. This was a general problem, however, that affected all
of the tested methods.
Discussion

We present PANCOVA, a phylogenetic ANCOVA model
that offers a comprehensive approach to exploring the con-
sequences of major historical shifts (e.g., key innovations,
changes in behavior, colonization of new habitats, splitting
This content downloaded from 128.1
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of lineages, substantial environmental change). It does so by
estimating changes in the rate of phenotypic diversification
as well as changes in directional trends or relationships to
other phenotypic traits. The method is flexible, easy to im-
plement, and offers evolutionary insights that are not avail-
able using other methods.
We illustrated PANCOVA using an example from Shultz

and Dunbar (2010), who suggested that sociality in birds
would be associated with the evolution of larger brains, if
we focused on aspects of sociality such as biparental care.
Biparental care requirescomplexsocialnegotiations, can im-
pose significant cognitive costs, and along with sociality has
been associated with evolutionary changes in brain mor-
phology (Barton 1996; Goodson et al. 2012). In brief, bipa-
rental care in birds is thought to extend the altricial period,
allowingmore time for brain development and, consequently,
larger brains (Pérez-Barbería et al. 2007; Shultz and Dunbar
2010). Our PANCOVA results support this conclusion by
finding that the evolutionary gain of biparental care was asso-
ciated with an increase in relative telencephalon size, but only
in larger-bodied bird species. In smaller-bodied bird species,
the inferred relationship was weaker or reversed. In addition,
our PANCOVA found that social birds had higher rates of
relative telencephalon size diversification. Results from other
methods were superficially consistent, but most did not de-
tect significant differences between the relative telencepha-
lons of social (biparental) and nonsocial birds, and none de-
tected the complex interaction between brain size, body size,
and sociality. This interaction was also missed in the study
of Shultz andDunbar (2010), who focused on ratios and phy-
logenetically controlled residuals asmeasures of relative brain
size. Using these composite variables, they found that larger
relative brain sizes are associated with biparental care, as well
as other life-history traits and behavioral characteristics (e.g.,
altricial development, pair bonding). Our results are consis-
tent with these in regard to telencephalon size and biparental
care, but our PANCOVA did not miss the aforementioned
interaction because the continuous variables were modeled
rather than synthesized in a single composite variable. In this
way, differences in allometric trends according to particular
states of parental investment can be exploredmore thoroughly.
Table 3: Parameter estimates for ANCOVA with Monte Carlo
null distribution
Statistic
 Estimate
 Critical values
F
 238.2*
 9.61

b0
 22.9*
 21.36, 2.37

b1
 .4
 21.84, 1.91

b2
 .6*
 2.23, .22

b3
 .1
 2.29, .32
Note: Shown are the F ratio and estimates of intercepts (b0 and b1) and slopes
(b2 and b3) describing the relationship between telencephalon (y) and body (z)
size for birds with and without sociality (x) using standard ANCOVA.We con-
ducted hypothesis tests by comparing these estimates with critical values ob-
tained from phylogenetically simulated null distributions.

* P p :05.
Table 4: Parameter estimates for ANCOVA using the adaptation-inertia method
Model
Primary optima
03.224.
s and C
t1/2
004 on Oct
onditions (h
Phylogenetic Correction
Factor
ober 23, 2016 14:48:45 PM
ttp://www.journals.uchicago.edu
vy
/t-and-c).
AICc
Social
 Nonsocial
 Slope
Fixed covariate
 23.5 (.43)
 23.6 (.44)
 .7 (.03)
 19.80
 .02
 3.37
 56.0

Brownian motion covariate
 23.2 (.27)
 23.6 (.28)
 .9 (.04)
 .21
 .71
 1# 1025
 115.5
Note: Shown are results from regression of bird telencephalon mass (y) on times spent in social and nonsocial contexts (x), with body mass modeled as either
a fixed or a randomly evolving (Brownian motion) covariate. Standard errors for the primary optima are shown in parentheses. The optimal regression (slope)
is the slope of body mass corrected by the phylogenetic correction factor, which together with the phylogenetic half-life (t1/2) can be used as a measure of phy-
logenetic inertia. The stationary variance (vy) measures the amount of noise in telencephalon mass as it evolves toward the primary optima. AICc p corrected
Akaike information criterion.
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In addition, PANCOVA expands the relevance of the pattern
by adding the element of phenotypic diversification, which
was not explored by Shultz and Dunbar (2010).

PANCOVA begins with a powerful and flexible PGLS re-
gression model that allows researchers to add and remove
likely parameters within the familiar context of regression
model fitting. ANCOVA approaches that explicitly model
the relationships between variables can be much more use-
ful than ratios or residuals for studying allometry (García-
Berthou 2001; Freckleton 2002). In the bird example ex-
plored here, ratios reported a difference in rates between
social and nonsocial birds but failed to detect a difference
in mean relative telencephalon sizes. On the contrary, a dif-
ference in mean relative telencephalon sizes, but not rates,
was detected under phylogenetic residuals. Therefore, con-
clusions about the resulting evolutionary trend would have
depended on the chosen composite variable (i.e., ratios or
phylogenetic residuals), even when both means and evolu-
tionary rates were actually relevant for describing the pat-
tern(asshownbyPANCOVA).Besidesallometry,ANCOVAs
can also be useful in studying the evolution of sexual dimor-
phism, interspecies coevolution, and other complex pheno-
types.Here,weappliedthreeformsofANCOVAs(withMonte
Carlo simulations, the adaptation-inertia model, and the
PANCOVA), all of which detected an allometric relationship
between telencephalon and body mass. Further exploration
of parameters is more difficult with the Monte Carlo simula-
tions (which emphasize hypothesis testing rather thanparam-
eter estimation) or with the adaptation-inertia model, which
offers a rich evolutionary interpretation but for which there
have only been a few limited ANCOVA-type models imple-
mented (Pienaar 2011; Bartoszek et al. 2012).

PANCOVA offers the added benefit of simultaneously
estimating rates of diversification. This is an important ad-
vance from simpler ANCOVAmethods (e.g., Garland et al.
1993; Butler et al. 2000; Lavin et al. 2008) that consider shifts
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in mean traits and trait covariation after a major historic
event but do not allow for the possibility of a change in evo-
lutionary rate or variance. It is also an extension of like-
lihood procedures that estimate rates but do not allow a
shift in mean traits or trait relationships (O’Meara et al.
2006; Thomas et al. 2006, 2009). In our worked example,
PANCOVA detected an increase in the rate of relative tel-
encephalon diversification in bird species that have gained
sociality (biparental care), a novel finding that raises ques-
tions about whether other factors are constraining both
parental investment and brain size evolution in these spe-
cies. For example, baby birds raised by single parents may
have slower growth rates (due to inadequate nutrition) or
fewer social learning opportunities, both of which may im-
pose constraints on adult brain size.
Our model is most similar in concept to Revell and Col-

lar’s (2009) rate matrix approach, although the two ap-
proaches differ considerably in both implementation and
interpretation. PANCOVA is computationally simpler and
thusmaybe particularly useful when exploring different com-
binations of mean structures and error terms as well as evo-
lutionary scenarios other than Brownian motion (which was
not the best model for the bird data set explored here). More
importantly, although PANCOVA’s regression slopes are con-
ceptually similar to the covariances estimated by Revell and
Collar’s (2009) approach, the rate parameters estimated by
the two methods are quite different. Whereas Revell and Col-
lar’s (2009) rate estimates refer to the two traits indepen-
dently of each other (e.g., rate of telencephalon mass diver-
sification and rate of body mass diversification, separately),
the PANCOVA estimates refer to relative telencephalon size
(residuals of the relationship between telencephalon and body
mass) and are calculated as functions of the entire ANCOVA
model. Thus, PANCOVA rate estimates may be most use-
ful when the covariate is a scaling or other correction factor
rather than a trait of independent interest. Note also that be-
cause both rate parameters and slopes are jointly estimated,
even the slope estimates resulting from application of these
two approaches could differ dramatically.
PANCOVA also estimates differences in intercepts that

are not provided in Revell and Collar’s (2009) evolutionary
ratematrix approach. For example, PANCOVAcould be used
to detect an evolutionary shift from isometry (intercept p 0)
to linear allometry (intercept ( 0), even when the slopes of
the lines (or, equivalently, the covariances of the evolution-
ary rate matrices) are the same (Albrecht et al. 1993; Pack-
ard and Boardman 1999). Different PANCOVA intercepts
could be also interpreted as shifts in directional trends or
optimal traits, yielding results that are superficially similar
to those produced by application of the adaptation-inertia
model (Hansen 1997; Hansen et al. 2008). The PANCOVA
may be most useful, as in the bird example, when the covar-
iate is a correlated trait (e.g., a scaling factor), and the cate-
Table 5: Evolutionary rate matrices
Bird type, measurement

Telencephalon

size
 Body size
Nonsocial (correlation p 0.98):

Telencephalon size
 2.0
 3.3

Body size
 3.3
 5.7
Social (correlation p 0.94):

Telencephalon size
 2.2
 2.8

Body size
 2.8
 4.0
Note: Shown are estimates of evolutionary variances (rates) and covariances
for telencephalon and body sizes using Revell and Collar’s (2009) method. This
approach found support for a full matrix with different variances and covari-
ances describing the relationship between telencephalon and body mass in so-
cial and nonsocial birds, but the change in the relationship between telenceph-
alon and body size with the evolution of sociality was quite small.
03.224.004 on October 23, 2016 14:48:45 PM
s and Conditions (http://www.journals.uchicago.edu/t-and-c).
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gorical variable is an indicator trait (e.g., biparental care)
that is linked to a number of important factors (e.g., social
behavior and development) rather than an explicitly causal
selective regime. Hansen’s adaptation-inertia model would
usually be a better choice whenmore is known about the rel-
evant selective forces, and it is important to avoid the prob-
lem of inherited maladaptation (Hansen and Orzack 2005),
which can result from ignoring the effects of past values of
the explanatory variable on the current values of the re-
sponse. Development of an adaptation-inertia model that
also estimates evolutionary rates (or a PANCOVA that relies
on an adaptation-inertia framework) could be an important
future advance. By accounting for unequal phenotypic rates,
PANCOVA showed improved statistical properties such as
higher precision (lower standard errors in regression coeffi-
cients when compared with ANCOVA), better model fitting
(lower AICc values in table 1), and more accurate descrip-
tions of trait relationships, as simulation results showed that
assuming homogeneity of phenotypic rates, when rate shifts
were present, compromised the sensitivity of other meth-
ods to detect positive relationships between continuous var-
iables (PANCOVAcorrectly estimated both positive relation-
ships and rate shifts). It is possible that similar statistical
properties will benefit the adaptation-inertia framework by
accounting for unequal stationary variances.

An adaptation-inertia version of PANCOVA would also
be a valuable step toward developing a comprehensive com-
parative method for studying adaptive radiations. Adaptive
radiation is a complex evolutionary phenomenon that often
includes cladogenesis and rapid speciation as well as pheno-
typic diversification in response to selection (Gavrilets and
Losos 2009; Glor 2010). By considering different evolution-
This content downloaded from 128.1
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ary rates and optima, the extension we suggest here would
cover the diversification and selection components of an
adaptive radiation when combining continuous and dis-
crete variables. Another useful extension would be to also
add estimates of species richness, using existing compara-
tive methods that infer changes in speciation and extinction
rates (e.g., Alfaro et al. 2009; Stadler 2011; Hunt 2013). As
comparative methods considering phenotypic diversifica-
tion, adaptation, and speciation become available in com-
mon frameworks, it becomes more possible to combine
them into single approaches that address some of the most
important questions in evolutionary biology. We hope that
our approach will inspire additional theoretical develop-
ment around this important theme.
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APPENDIX

Supplemental Table

Table A1: Selected simulation results
03.
s an
Intercepts
224.004 on October 23, 201
d Conditions (http://www.
Slopes
6 14:48:45 PM
journals.uchicago.edu/t-and-
Rates
Simulation, method
 b0
 b1
 b2
 b3
 g0
c).
g1
Zero XY correlation, diversification increases:
No phylogeny
 .1 (.74)
 . . .
 .0 (.18)
 . . .
 . . .
 . . .
Contrasts
 . . .
 . . .
 .0 (.18)
 . . .
 . . .
 . . .
PGLS-OU
 . . .
 . . .
 .0 (.18)
 . . .
 . . .
 . . .
PANCOVA
 .1 (1.55)
 .1 (1.20)
 .0 (.69)
 .0 (.66)
 16.1
 6.2
Positive XY correlation, diversification increases:
No phylogeny
 .1 (.33)
 . . .
 .9 (.08)
 . . .
 . . .
 . . .
Contrasts
 . . .
 . . .
 .9 (.08)
 . . .
 . . .
 . . .
PGLS-OU
 . . .
 . . .
 .9 (.08)
 . . .
 . . .
 . . .
PANCOVA
 .1 (1.50)
 .0 (1.19)
 .9 (.54)
 .0 (.56)
 3.0
 1.2
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Table A1 (Continued )
This content downloaded from 128.103.
All use subject to University of Chicago Press Terms an
Intercepts
224.004 on October 23, 201
d Conditions (http://www.
Slopes
6 14:48:45 PM
journals.uchicago.edu/t-and-
Rates
Simulation, method
 b0
 b1
 b2
 b3
 g0
c).
g1
Positive XY correlation, high X variance, diversification increases:
No phylogeny
 .2 (1.97)
 . . .
 .1 (.18)
 . . .
 . . .
 . . .
Contrasts
 . . .
 . . .
 .1 (.18)
 . . .
 . . .
 . . .
PGLS-OU
 . . .
 . . .
 .1 (.18)
 . . .
 . . .
 . . .
PANCOVA
 .2 (2.65)
 .3 (2.09)
 .3 (.95)
 —.2 (.84)
 56.8
 353.6
Note: Parameter estimates resulting from analysis of data simulated along a 33-taxon phylogeny using a nonphylogenetic regression, a regression based on
the Felsenstein independent contrasts method, phylogenetic generalized least squares–Ornstein-Uhlenbeck (PGLS-OU) regression, and phylogenetic analysis of
covariance (PANCOVA), assuming Brownian motion. Numbers in parentheses are 1 standard error. See “A Worked Example” for other details about the sim-
ulation process and phylogenetic comparative methods.
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